Révision taxinomique des *Triaenops* malgaches (Mammalia, Chiroptera, Hipposideridae)

Julie RANIVO

Département de Biologie animale, Université d'Antananarivo, B.P. 906, Antananarivo (101) (Madagascar) et WWF, Ecology Training Program, BP 738, Antananarivo (101) (Madagascar) ranivo.iulie@voila.fr

Steven M. GOODMAN

Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, Illinois 60605 (USA) et WWF, BP 738, Antananarivo (101) (Madagascar) sgoodman@fmnh.org

Ranivo J. & Goodman S. M. 2006. — Révision taxinomique des *Triaenops* malgaches (Mammalia, Chiroptera, Hipposideridae). *Zoosystema* 28 (4): 963-985.

RÉSUMÉ

Trois espèces de *Triaenops* Dobson, 1871 sont généralement reconnues de l'île de Madagascar: T. rufus A. Milne-Edwards, 1881, T. furculus Trouessart, 1906 et T. auritus G. Grandidier, 1912. Une autre espèce a été nommée, T. humbloti A. Milne-Edwards, 1881 mais ce taxon a été considéré comme un synonyme de T. rufus. En outre, de nombreux auteurs traitent T. auritus comme un synonyme de T. furculus. L'holotype de T. furculus a été récolté près de Sarodrano (extrême sud-ouest), celui de *T. auritus* aux alentours de Diégo-Suarez (= Antsiranana) et celui de T. rufus de l'est de Madagascar. De récentes collections, provenant de 15 sites différents de la partie sèche de Madagascar, comprenant 145 spécimens de T. furculus et 115 de T. rufus, ont été utilisées dans le cadre d'une étude morphologique détaillée (9 mesures externes, 13 crâniennes, 12 dentaires et 11 des ailes) destinée à appréhender les variations géographiques que les membres de ce genre pourraient présenter. Les résultats indiquent que T. auritus est distinct de T. furculus et qu'il est localisé dans la portion nord et nord-ouest de l'île. Triaenops furculus est limité aux formations des forêts sèches de l'ouest central et du sud-ouest. Triaenops rufus ne montre pas de variation morphologique en fonction de sa distribution géographique à travers cette large zone de la partie sèche de l'île. Les résultats obtenus au cours de cette étude confirment la validité du taxon T. auritus.

MOTS CLÉS
Mammalia,
Chiroptera,
Hipposideridae,
Triaenops,
Madagascar,
révision,
variation géographique.

ABSTRACT

Taxonomic revision of Malagasy Triaenops (Mammalia, Chiroptera, Hipposideridae).

Three different species of *Triaenops* Dobson, 1871 are often recognized as occurring on Madagascar: T. rufus A. Milne-Edwards, 1881, T. furculus Trouessart, 1906, and T. auritus G. Grandidier, 1912. Another named species, T. humbloti A. Milne-Edwards, 1881, is generally considered a synonym of *T. rufus*. Further, several authors have treated *T. auritus* as a synonym of *T. furculus*. The holotype of T. furculus was obtained near Sarodrano in the extreme southwest, T. auritus in the general vicinity of Diégo-Suarez (= Antsiranana), and *T. rufus* in the east. Using recent collections of 145 T. furculus and 115 T. rufus specimens from 15 different sites in the drier portions of Madagascar we conducted a detailed morphometric study (9 external, 13 cranial, 12 dental and 11 wing measurements) to assess patterns of geographic variation in members of this genus. The results indicate that *T. auritus* is distinct from *T. furculus* and occurs in the northern and northwestern portion of the island. Triaenops furculus is limited to the drier forest formations of the west central and southwest. Triaenops rufus shows no notable patterns of geographic variation across its broad range in the drier portions of the island.

KEY WORDS

Mammalia,
Chiroptera,
Hipposideridae, *Triaenops*,
Madagascar,
revision,
geographic variation.

INTRODUCTION

Très peu de documents existent sur les chiroptères de Madagascar, particulièrement sur leur taxinomie. Mais durant ces 10 dernières années de considérables efforts ont été développés pour inventorier des aires non connues ou très peu connues de l'île, notamment la partie ouest de Madagascar qui recèle la plus grande richesse en chauves-souris (Goodman et al. 2005a). Plusieurs espèces nouvelles pour la science ont été identifiées et sont en train d'être décrites (voir par exemple: Goodman & Cardiff 2004; Goodman et al. 2005b; Goodman et al. 2006a, b). Actuellement, un certain nombre de spécimens collectés par nos équipes de recherche (Fig. 1) servent pour des révisions taxinomiques pour les chauves-souris dont il existe très peu de spécimens (voir par exemple: Goodman & Ranivo 2004).

Les *Triaenops* Dobson, 1871 sont des chauvessouris insectivores, de la famille des Hipposideridae Lydekker, 1891, caractérisées par la présence d'une feuille nasale divisée en trois lobes formant un trident. Ils vivent dans des grottes, dans les anfractuosités des falaises, des roches, dans des tunnels souterrains et dans les trous d'arbres. Quatre noms différents sont disponibles pour les membres de ce genre à Madagascar: *T. rufus* A. Milne-Edwards, 1881 (l'holotype provient de l'est de Madagascar), *T. humbloti* A. Milne-Edwards, 1881 (l'holotype provient de la côte est de Madagascar), *T. furculus* Trouessart, 1906 (l'holotype provient de Sarodrano, extrême sudouest) et *T. auritus* G. Grandidier, 1912 (l'holotype provient de Diégo-Suarez [= Antsiranana]).

Dorst (1948) a effectué une révision systématique des *Triaenops* de Madagascar basée sur les rares exemplaires se trouvant dans les collections à Paris. Dans sa révision il reconnaît trois espèces, *T. humbloti, T. rufus* et *T. furculus*, il a tiré les mêmes conclusions qu'Allen (1939) en considérant *T. auritus* comme synonyme de *T. furculus*. Par la suite, Hill (1982) a revu les membres de ce genre et a aussi considéré que *T. auritus* pouvait être un synonyme de *T. furculus*; il a traité *T. humbloti* comme un synonyme de *T. rufus*, et suggère que *T. rufus* serait plutôt une forme géographique de l'espèce *T. persicus* largement distribuée en Afrique et au Moyen-Orient. Peterson *et al.* (1995), Eger & Mitchell (2003) et Simmons (2005) reconnaissent qu'il y a actuellement trois espèces

différentes de *Triaenops* à Madagascar: *T. furculus*, *T. auritus* et *T. rufus*, mais le statut taxinomique de *T. auritus* reste non résolu par ces auteurs car on ne connaît l'espèce que par un seul spécimen (l'holotype) en mauvais état. *Triaenops humbloti* est considéré comme synonyme de *T. rufus* dans ces trois études taxinomiques. Le nombre réduit de spécimens disponibles a constitué une gêne pour résoudre le statut taxinomique des membres malgaches de ce genre. Le but de cet article est de présenter une révision taxinomique de ce genre à Madagascar, basée sur des caractères morphologiques, en utilisant un nombre élevé de spécimens nouvellement récoltés.

SPÉCIMENS ET MESURES

Deux groupes seront désignés dans cette étude: le groupe des rufus fera référence à Triaenops rufus et T. humbloti et le groupe des furculus à T. furculus et T. auritus. Chaque spécimen a été pesé et 20 caractères externes (incluant les ailes), 13 crâniens et 12 dentaires ont été mesurés pour chaque spécimen (Tableau 1). L'âge est basé sur l'usure des dents, sur la fusion basiosphénoïde et le développement des crêtes sagittales. Dans le groupe furculus la coloration du pelage a aussi été utilisée pour déterminer les classes d'âge. Pour ce groupe, la classe 1 est retenue pour les jeunes qui présentent une coloration gris clair à gris-jaune, une dentition non-usée, parfois incomplète, une crête sagittale faiblement développée et un basiosphénoïde non fusionné; la classe 2 correspond aux sub-adultes avec une coloration intermédiaire entre les jeunes et les adultes souvent gris-jaune, une dentition complète, relativement usée, une crête sagittale développée et un basiosphénoïde fusionné; la classe 3 regroupe les adultes qui ont une coloration rouge-orangé ou rougeâtre-or, des dents usées, une crête sagittale bien développée et un basiosphénoïde fusionné.

Le poids est donné en grammes avec une précision de 0,1 g. Les mesures externes ont été prises avec un double-décimètre et données en millimètre avec une précision de 0,5 mm. Les mesures ostéologiques et dentaires ont été prises à l'aide d'un pied à coulisse digital et données en millimètre avec une précision de 0,1 mm. Les dents supérieures sont indiquées par des lettres majuscules, les inférieures par des

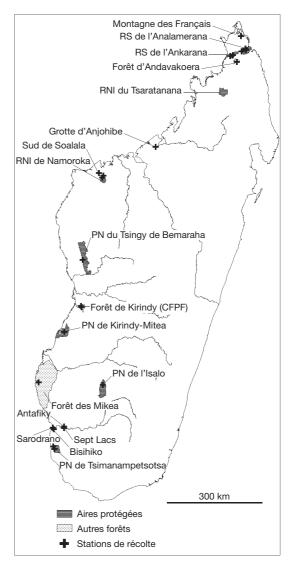


Fig. 1. — Carte de Madagascar représentant les différents sites d'étude. Abréviations des aires protégées: **PN**, Parc national; **RNI**, Réserve naturelle intégrale; **RS**, Réserve spéciale.

minuscules. Le Tableau 1 donne une liste des variables et leurs acronymes utilisés pour les analyses.

ABRÉVIATIONS

FMNH Field Museum of Natural History, Chicago; MCZ Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts;

MNHN Muséum national d'Histoire naturelle, Zoologie, Paris.

LG4D

les phalanges

TABLEAU 1. — Liste et acronymes des variables utilisées pour les analyses.

Mesures e	xternes
LT	longueur de la tête et du corps, queue comprise lorsqu'elle existe
LQ	longueur de la gueue, de la base du corps à la dernière vertèbre
PIED	longueur du pied, du talon à l'extrémité du plus long doigt sans la griffe
OREIL	longueur de l'oreille, de la base de l'échancrure à l'extrémité du pavillon
AB	longueur de l'avant-bras, longueur de l'os de l'avant-bras du coude au poignet pliant
POIDS	poids de l'individu
Mesures c	râniennes
LCR	longueur totale du crâne, de la partie la plus postérieure de l'occipital au point le plus en avant du prémaxillaire
LCB	longueur condylo-basale, du condyle occipital à la partie la plus antérieure de l'incisive supérieure
ZYGO	largeur zygomatique, largeur au niveau de la partie la plus large du crâne entre les arcs zygomatiques
HBC	hauteur de la boîte crânienne, de la plus haute crête occipitale à la base du condyle occipital
INTER	largeur minimum au niveau de la constriction inter-orbitale, largeur minimale de l'os entre les deux orbites
MAST	largeur du mastoïde, largeur au niveau de la partie la plus grande de l'apophyse du mastoïde
ROST	longueur du rostre, du prémaxillaire à la constriction inter-orbitale
PAL	longueur du palais, à partir du bord postérieur du palais jusqu'au bord antérieur de l'insertion de la
MANID	dent la plus antérieure (sans épine post-palatine)
MAND CORCON	longueur de la mandibule, du condyle au point de séparation coronoïde-condyle, distance maximale de l'apophyse coronoïde au condyle
CONAN	condyle-angulaire, distance maximale du condyle à l'apophyse angulaire
LGNAS	longueur nasale, longueur maximale de l'os nasal
MAXNAS	largeur maximale nasale, largeur maximale de l'os au niveau du nez
Mesures d	
I1-M3	longueur entre l¹ et M³, longueur totale de la rangée dentaire de la première incisive, ou des dents les
	plus antérieures, au niveau de l'insertion au crâne à la dernière molaire
MOLS	longueur des dents molariformes supérieures, longueur de la rangée de dents molariformes
	supérieures post-canines (sans les petites PM¹)
C1-C1	largeur entre les canines supérieures, largeur entre les bords externes des canines supérieures
M_3 - M_3	largeur entre les dernières molaires supérieures, largeur entre les bords externes des dernières
	molaires supérieures
lg M	largeur de la dernière molaire supérieure (côté extérieur droit)
HCS	hauteur de la canine supérieure, de la pointe à la base d'insertion au crâne
i ₁ -m ₃	longueur totale de la rangée dentaire inférieure, de la première insertion de la première incisive à la
	dernière molaire
moli	longueur de la rangée de dents molariformes inférieures, longueur de la rangée de dents molariformes
molcon	inférieures post-canines molaire-condyle, distance entre la base antérieure de la dernière molaire inférieure au condyle
lg m	largeur de la dernière molaire inférieure
hci	hauteur de la canine inférieure, de la pointe à la base d'insertion au crâne
hm ₂	hauteur de la mandibule, du protoconoïde m ₂ à la base de la mandibule
Mesures a	
LG1D	longueur du premier doigt, de la base de l'os du premier doigt au niveau de l'insertion articulaire
	jusqu'à la pointe de l'os (jamais avec les ongles)
LG2D	longueur du deuxième doigt du métacarpe, de la base de l'os du deuxième doigt au niveau de
	l'insertion articulaire jusqu'à la pointe de l'os
LG3D	longueur du troisième doigt du métacarpe, de la base de l'os du troisième doigt au niveau de
	l'insertion articulaire jusqu'à la terminaison de l'os au niveau de la deuxième articulation donnant sur
	les phalanges
LG31	longueur de la première phalange du troisième doigt, longueur de l'os constituant cette phalange
LG32	longueur de la deuxième phalange du troisième doigt, longueur de l'os constituant cette phalange
LC4D	langueur du quatrième deigt du métagarne, de la base de l'ac du quatrième deigt au pivou de

966 ZOOSYSTEMA • 2006 • 28 (4)

longueur du quatrième doigt du métacarpe, de la base de l'os du quatrième doigt au niveau de l'insertion articulaire jusqu'à la terminaison de l'os au niveau de la deuxième articulation donnant sur

LG41 LG42 LG5D	longueur de la première phalange du quatrième doigt, longueur de l'os constituant cette phalange longueur de la deuxième phalange du quatrième doigt, longueur de l'os constituant cette phalange longueur du cinquième doigt du métacarpe, de la base de l'os du cinquième doigt au niveau de l'insertion articulaire jusqu'à la terminaison de l'os au niveau de la deuxième articulation donnant sur les phalanges
LG51 LG52	longueur de la première phalange du cinquième doigt, longueur de l'os constituant cette phalange longueur de la deuxième phalange du cinquième doigt, longueur de l'os constituant cette phalange
Mesures d	les feuilles nasales
Fext Fint Finf	longueur externe de la feuille nasale supérieure, de la base à la pointe de la feuille longueur interne de la feuille nasale supérieure, de la base à la pointe de la feuille longueur de la feuille nasale inférieure, de la base à la pointe de la feuille

TABLEAU 2. — Les OTU, les localités et les effectifs des adultes pour chaque OTU dans les groupes furculus et rufus.

ОТИ	Localités	Effectif total	Nombre de femelles	Nombre de mâles
Groupe	furculus			
OTU 2	Ankarana + Analamerana + Andavakoera	56	36	20
OTU 5	Namoroka	23	14	9
OTU 6	Bemaraha	1	0	1
OTU 9	Kirindy-Mite	1	1	0
OTU 10	Forêt des Mikea	2	1	1
OTU 12	Sarodrano + Tsimanampetsotsa	23	8	15
OTU 13	Sept Lacs + Antafiky	7	5	2
Groupe i	rufus			
OTU 2	Ankarana	15	9	6
OTU 3	Analamerana	4	1	3
OTU 4	Mitsinjo [Grotte d'Anjohibe]	4	3	1
OTU 5	Namoroka	3	1	2
OTU 6	Bemaraha	23	23	0
OTU 7	Forêt Kirindy (CFPF) + Kirindy-Mite	18	16	2
OTU 11	Isalo	8	0	8
OTU 12	Sarodrano + Tsimanampetsotsa	27	18	9
OTU 15	Holotype désigné de <i>rufus</i> + paratypes (est de Madagascar)	4	4	0
OTU 16	spécimens récoltés par Humblot en 1880	4	3	1

SITES DE RÉCOLTE

Les sites de récolte sont combinés en unités taxinomiques opérationnelles « Operational Taxonomical Units » (OTU) (Annexe 1). Le concept d'OTU suppose qu'un groupe d'animaux définis soit le même dans les différents sites de la même région ou biotope. C'est un regroupement d'espèces ou groupe d'espèces géographiquement proches. Les spécimens utilisés se trouvent au FMNH et au MNHN, le groupe des *T. furculus* compte 145 spécimens et celui des *T. rufus* 115 spécimens.

Sont regroupés dans une même OTU, les individus capturés dans diverses stations voisines de récolte d'un même biotope dans un périmètre limité. Au

total pour cette étude ont été retenues 16 OTU correspondant aux 16 localités de récolte des spécimens. À partir de ces OTU, des analyses de variance (ANOVA) ont été effectuées et en l'absence de différences significatives entre deux ou trois localités géographiquement proches, un regroupement a été effectué. À l'issue de ces regroupements deux séries d'OTU sont identifiées, une pour le groupe furculus et une pour le groupe rufus (Tableau 2).

TESTS STATISTIQUES

Les données ont été analysées par le logiciel STATISTICA version 5.1. Deux analyses ont

TABLEAU 3. — Résultats du test de Scheffé consécutif à l'ANOVA sur les variables significatives du groupe *furculus* femelle (*, plus grand; >, plus petit).

Variables	OTU 2 OTU 5 OTU 12 OTU 13	3 Valeur de P
PIED	*>	0,008
AB	*>	0,00008
	*>	0,005
LCR	*>	0,0008
	*>	0,003
LCB	*>	0,0001
	*>	0,006
MAST	*>	0,017
MAND	*>	0,00003
	*>	0,000004
MAXNAS	*>	0,026
	*>	0,045
[1 -M 3	*>	0,000003
	*>	0,000005
MOLS	*>	0,00002
	*>	0,017
C1-C1	*>	0,00009
M^3-M^3	*>	0,039
	*>	0,027
lg M	*>	0,000001
	>*	0,019
HCS	*>	0,002
i ₁ -m ₃	*>	0,00004
	*>	0,0002
moli	*>	0,00002
	*>	0,0002
hci	*>	0,0002
	*>	0,002
LG3D	*>	0,008
LG32	*>	0,005
	*>	0,021
	*>	0,011
LG4D	*>	0,016
LG41	*>	0,046
1.050	*>	0,009
LG5D	*>	0,004
	*>	0,016
LG52	*>	0,007

été effectuées: ANOVA avec les tests de Scheffé et analyse en composantes principales (ACP). Les différentes variables mesurées sur les femelles et les mâles de chaque OTU ont été traitées par l'ANOVA pour vérifier s'il y avait un dimorphisme sexuel. Comme l'ANOVA a révélé une différence significative entre les mâles et les femelles, les sexes ont été considérés séparément. Ensuite, pour chaque OTU les statistiques descriptives des mâles et des femelles sont données sous forme de tableaux (Annexe 2).

TABLEAU 4. — Corrélations entre les variables dentaires du groupe furculus femelle et les composantes principales (CP) après « varimax rotation ». Les valeurs en caractère gras > 0,70 indiquent une forte corrélation à la CP. La plupart des variables sont fortement corrélées à la première CP.

Variables	CP1	CP2	CP3
% variance cumulée	47,16	57,05	65,6
Eigenvalue	5,66	1,19	1,01
[1-M3	0,840	0,200	0,224
MOLS	0,758	0,105	0,349
C1-C1	0,436	0,268	0,555
M3-M3	0,388	0,297	0,664
lg M	0,581	0,352	0,189
HCS	0,102	0,863	0,080
i ₁ -m ₃	0,727	0,349	0,233
moli	0,832	0,218	0,268
molcon	0,648	-0,283	-0,191
lg m	0,555	-0,126	0,440
hci	0,565	0,617	0,020
hm ₂	0,109	-0,054	0,750

Une analyse de variance a été effectuée sur deux ou trois OTU géographiquement proches pour établir les regroupements. Après combinaisons de certaines OTU une ANOVA est effectuée sur l'ensemble des OTU de chaque groupe. Lorsque l'ANOVA est significative, on a procédé à des comparaisons multiples entre les OTU en utilisant le test de Scheffé. Enfin, une ACP sur les données non transformées est réalisée. L'ACP est effectuée sur les données centrées réduites (matrice de corrélations) dont le but de mieux comprendre les regroupements des « taxa ».

RÉSULTATS

GROUPE FURCULUS

Variations géographiques de la couleur du pelage Les populations du groupe furculus présentent des différences de coloration liées à l'âge des individus. En général les jeunes du nord (OTU 2, Ankarana, Analamerana et Andavakoera) sont de couleur gris clair à gris-jaune tandis que les adultes ont une coloration or-orangé à rougeâtre-or, similaire à celle de l'holotype de *T. auritus*. Pour les autres localités plus au sud (OTU 5 à 12 de Namoroka à Sarodrano) les jeunes ont plutôt une coloration gris cendré et les adultes ont une coloration variable gris-brun à gris-jaune.

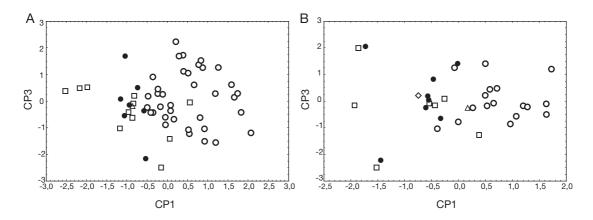


Fig. 2. — $\bf A$, position morphologique de la structure dentaire des individus de chaque OTU du groupe $\it furculus$ femelle dans l'espace 1-3 de l'analyse en composantes principales. L'axe 1 est positivement corrélé à la longueur des rangées dentaire (l¹-M³, MOLS, i_1 -m₃ et moil). L'axe 3 est fortement corrélé à hm₂; $\bf B$, position des différents individus du groupe $\it furculus$ mâle de chaque OTU selon un espace morphologique décrit par l'axe 1 et l'axe 3 de l'ACP. L'axe 1 est fortement corrélé à la longueur des rangées de dents (l¹-M³, i_1 -m₃ et moil) et les hauteurs des canines (HCS et hci). La variable molcon est expliquée par l'axe 3. $\bf O$, OTU 2, Ankarana, Analamerana et Andavakoera; $\bf \Box$, OTU 5, Namoroka; $\bf \diamondsuit$, OTU 6, Bemaraha; $\bf \Delta$, OTU 9, Kirindy-Mite chez les femelles et OTU 10, forêt des Mikea chez les mâles; $\bf \diamondsuit$, OTU 12, Sarodrano et Tsimanampetsotsa.

Variations géographiques de la morphométrie des femelles (Annexe 2)

Les mesures externes du groupe *furculus* montrent des différences notables entre les individus d'Ankarana, d'Analamerana et d'Andavakoera (OTU 2) qui sont plus grands que ceux de Sarodrano et Tsimanampetsotsa (OTU 12; Tableau 3). Par exemple, la moyenne des mesures de l'avant-bras des femelles du nord au sud sont respectivement: pour l'OTU 2 de 48,8 mm, pour l'OTU 5 de 46,5 mm et pour l'OTU 12 de 46,3 mm. L'ANOVA indique que cette variation est statistiquement significative (P < 0.001). De plus la comparaison des OTU par le test de Scheffé pour cette variable, montre des différences très significatives entre les individus de l'OTU 2 et ceux de l'OTU 5 (la plus proche OTU vers le sud) avec P < 0,001 et cette différence persiste avec l'OTU 12 (P = 0,005; Tableau 3). Contrairement à ces résultats, aucune différence significative concernant les mesures externes n'est observée entre l'OTU 5 et l'OTU 12. Les mêmes différences significatives sont observées au niveau de plusieurs mesures crâniennes, dentaires et des os de la main (Tableau 3). L'ACP réalisée sur les mesures dentaires permet de bien séparer graphiquement l'OTU 2 de l'OTU 5 et l'OTU 2 de l'OTU 12

(Fig. 2A). Les individus de l'OTU 2 forment un groupe localisé dans la partie droite du graphique. Le pourcentage des variables expliquées par les trois axes est de 65,6 %. Le Tableau 4 indique les variables utilisées pour cette ACP et leur corrélation aux composantes principales.

Variations géographiques de la morphométrie des mâles

Chez les mâles les avant-bras des individus de l'OTU 2 sont plus grands que ceux de l'OTU 5 et de l'OTU 12. Les mesures sont respectivement de 46,4 mm pour l'OTU 2, 45,7 mm pour l'OTU 5 et 44,0 mm pour l'OTU 12. L'ANOVA montre que cette variation est statistiquement significative (P = 0,002) et le test de Scheffé indique que les animaux de l'OTU 2 sont significativement plus grands que ceux de l'OTU 12 (Tableau 5). Cette différence est vérifiée pour presque toutes les mesures crâniennes. Concernant les mesures dentaires, les différences se situent surtout entre les individus de l'OTU 2 qui sont plus grands que ceux de l'OTU 5 ainsi qu'entre les animaux de l'OTU 2 et de l'OTU 12 (Tableau 5). Chez les mâles du groupe furculus, les individus de l'OTU 2 sont séparés du reste du groupe (Fig. 2B). Le

Tableau 5. — Résultats des tests Scheffé réalisés sur le groupe furculus mâle (*, plus grand; >, plus petit).

Variables	OTU 2 OTU 5 OTU 12 OTU 13	Valeur de P
AB	*>	0,002
LCR	*>	0,009
LCB	*>	0,0004
ZYGO	*>	0,029
MAST	*>	0,0008
MAND	*>	0,004
	*>	0,00005
MAXNAS	*>	0,003
I1-M3	*>	0,000
	*>	0,000
MOLS	*>	0,0003
M3-M3	*>	0,014
lg M	*>	0,037
HCS	*>	0,007
	*>	0,0003
i ₁ -m ₃	*>	0,000
	*>	0,000
moli	*>	0,002
	*>	0,001
molcon	*>	0,015
hci	*>	0,005
	*>	0,002
LG3D	*>	0,042
	*>	0,024
LG4D	*>	0,026
LG41	*>	0,037
LG42	*>	0,005
	*>	0,006
F4	*> >*	0,020
Fext Fint	>*	0,009
Fint	>*	0,044
LIUI	>	0,039

TABLEAU 6. — Corrélations entre les variables dentaires du groupe furculus mâle et les composantes principales (CP) après «varimax rotation». Les valeurs en caractère gras > 0,70 indiquent une forte corrélation à la CP. La plupart des variables sont fortement corrélées à la première CP.

Variables	CP1	CP2	CP3
% variance cumulée	51,18	62,72	70,7
Eigenvalue	6,14	1,38	0,95
[1 -M 3	0,781	0,461	0,227
MOLS	0,588	0,549	0,294
C1-C1	0,047	0,419	0,693
M3-M ³	0,453	0,564	0,422
lg M	0,064	0,923	0,128
HCS	0,836	-0,141	0,064
i ₁ -m ₃	0,716	0,222	0,160
moli	0,784	0,272	0,374
molcon	0,322	-0,037	0,788
lg m	0,382	0,746	-0,049
hci	0,773	0,407	0,092
hm ₂	0,475	0,091	0,254

Tableau 7. — Résultats du test de Scheffé consécutif à l'ANOVA sur les femelles du groupe *rufus* (*, plus grand; >, plus petit).

Variables	OTU 2 OTU 6 OTU 7 OTU 12	Valeur de P
LT	>*	0,009
	>*	0,009
LQ	>*	0,004
	>*	0,0009
PIED	*>	0,008
	>*	0,014
	>*	0,009
OREIL	>*	0,016
POIDS	>*	0,0008
	>*	0,0001
	>*	0,003

Tableau 6 indique les variables utilisées pour cette ACP et leur corrélation par rapport aux composantes principales. Notons que le pourcentage des variables expliquées par les trois facteurs de l'ACP est de 70,7 %.

Sur la base des quelques mesures disponibles sur l'holotype de *T. auritus*, il semble que les individus du groupe Ankarana (OTU 2) soient les plus proches. Mais le spécimen de *T. auritus* reste pour de nombreuses mesures plus grand que les individus de l'OTU 2. Quant à l'holotype de *T. furculus*, il ressemble beaucoup aux individus de l'OTU 5 et de l'OTU 12 pour toutes les mesures.

GROUPE RUFUS

Variations géographiques de la morphométrie des femelles (Annexe 3)

Les analyses montrent des différences significatives pour certaines mesures externes: pied, queue, longueur totale et poids. Par exemple, la longueur du pied des femelles de l'OTU 6 (dont la moyenne est de 7,0 mm) est significativement plus petite que chez celles de l'OTU 2 (7,9 mm), de l'OTU 7 (7,7 mm) et de l'OTU 12 (7,7 mm) (Tableau 7). La longueur totale du corps des individus de l'OTU 7 est significativement plus grande que celle des individus de l'OTU 2 et de l'OTU 6. Les individus

Variables	OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12	Valeur de P
POIDS	>*	0,0004
	*>	0,0003
LCR	>*	0,003
	*>	0,027
	*>	0,001
	*>	0,049
	*>	0,002
lg M	*>	0,028
LG1D	>*	0,00007
	*>	0,0007
	*>	0,0007
	*>	0,00001
	*>	0,000001
Finf	>*	0,046

TABLEAU 8. — Résultats du test de Scheffé consécutif à l'ANOVA sur les mâles du groupe rufus (*, plus grand; >, plus petit).

de l'OTU 2 sont plus légers que ceux des autres OTU. Aucune différence significative n'est observée sur les mesures crâniennes, dentaires et alaires. L'ACP effectuée sur les mesures dentaires montre une homogénéité entre les différentes OTU (non illustré).

Variations géographiques de la morphométrie des mâles

Très peu de variations significatives inter-OTU sont observées. Les mâles de l'OTU 11 sont significativement plus lourds que ceux de l'OTU 2 et de l'OTU 12 (Tableau 8). La longueur du crâne et la longueur du premier doigt des individus de l'OTU 3 sont significativement plus grandes que celles des autres OTU. Les différences significatives entre les OTU pour les mâles et pour les femelles ne montrent pas de concordance au plan géographique. Les différences significatives au niveau du poids pourraient s'expliquer par une différence saisonnière de récoltes des spécimens. Les individus les plus lourds comme ceux de l'OTU 7, de l'OTU 6 et de l'OTU 11 ont été récoltés pendant les mois de novembre et décembre alors que ceux de l'OTU 2 qui sont les plus légers ont été récoltés aux mois d'avril et de mai. Les autres différences non parallèles chez les mâles et les femelles obtenues au sein du groupe rufus pourraient être attribuées aux erreurs de type II.

Différences crâniennes et dentaires entre les *Triaenops* malgaches

Comparaisons des espèces malgaches

Caractères crâniens. La forme générale des crânes de *T. auritus* et *T. furculus* est similaire mais se distingue aisément de celle de *T. rufus* (Figs 3; 4).

Le prémaxillaire de *T. rufus* est plus allongé que celui des deux autres espèces, et chez T. auritus il est beaucoup plus large et trapu au niveau de la constriction. Le rostre est robuste chez les trois espèces, avec un gonflement nasal largement développé. Chez T. rufus le gonflement nasal est distinctement moins arrondi comparé à celui des deux autres espèces et la forme en perspective latérale montre légèrement une expansion angulaire qui est suivie postérieurement par un plan convexe courbe à travers la boîte crânienne de la lamba. Au contraire, chez T. auritus et T. furculus il y a une expansion notablement bulbeuse du rostre et une profonde dépression post-nasale, devenant de plus en plus développée chez *T. auritus*. En vue dorsale, le rostre de T. rufus est distinctement enfoncé entre les deux parties des bosses antérieures médianes mais ceci n'est le cas ni chez *T. auritus* ni chez *T. furculus*. En outre, chez *T. rufus* il y a une petite dépression entre les bosses médianes antérieures et postérieures formant une ligne transverse – cette structure n'est présente ni chez T. auritus ni chez T. furculus. La dépression du rostre est plus développée chez T. rufus, formant un bassin entre la portion postérieure de

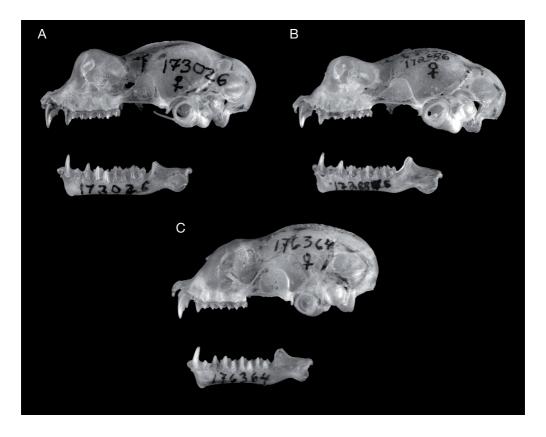


Fig. 3. — Vue latérale du crâne et des mandibules des adultes de *Triaenops* Dobson, 1871 malgaches (image FMNH Z94413d par John Weinstein): **A**, *T. auritus* G. Grandidier, 1912, $^{\circ}$, Réserve spéciale d'Ankarana (FMNH 173026); **B**, *T. furculus* Trouessart, 1906, $^{\circ}$, 3,7 km SSE Sarodrano, près de la localité de l'holotype (FMNH 172886); **C**, *T. rufus* A. Milne-Edwards, 1881, $^{\circ}$, Réserve spéciale d'Ankarana (FMNH 176364).

la bosse médiane et la tranche antérieure de la crête sagittale. Ce bassin est notablement réduit chez *T. furculus* et absent chez *T. auritus*.

Les arcs zygomatiques des trois espèces ne sont pas latéralement élargis et ont une expansion dorsale bien développée. Chez *T. rufus* cette structure est postérieurement dilatée et a une forme rectangulaire, alors que chez *T. auritus* et *T. furculus* elle est notablement réduite en taille et a une forme triangulaire. Les bras antérieurs du zygomatique de ces trois espèces sont solides et fortement construits. Chez *T. rufus* ce bras forme une large arche de l'os à la jonction du maxillaire, tandis que chez *T. auritus* et *T. furculus* il est distinctement étroit et resserré. La forme de l'arche zygomatique chez *T. auritus* et *T. furculus* est similaire. Le foramen infraorbital

chez *T. rufus* a une forme oblongue, tandis que chez les deux autres espèces la forme est distinctement plus arrondie. Chez T. furculus l'arche supérieure du pont de foramen est plus mince et finement rétrécie par rapport à celle de T. auritus. La crête sagittale de *T. rufus* est faiblement développée et ne se dresse pas dans la région interorbitale. Au contraire, cette structure est beaucoup plus développée chez T. auritus et T. furculus, commençant par une crête distinctive juste postérieure à la dépression du rostre et continuant postérieurement au lamba. La crête sagittale est notablement plus large chez T. auritus que chez T. furculus. La crête lambdoïde chez T. rufus et T. auritus est notablement plus développée que chez T. furculus, formant une arête latérale au-dessus du supraoccipital, tandis que chez T. furculus cette

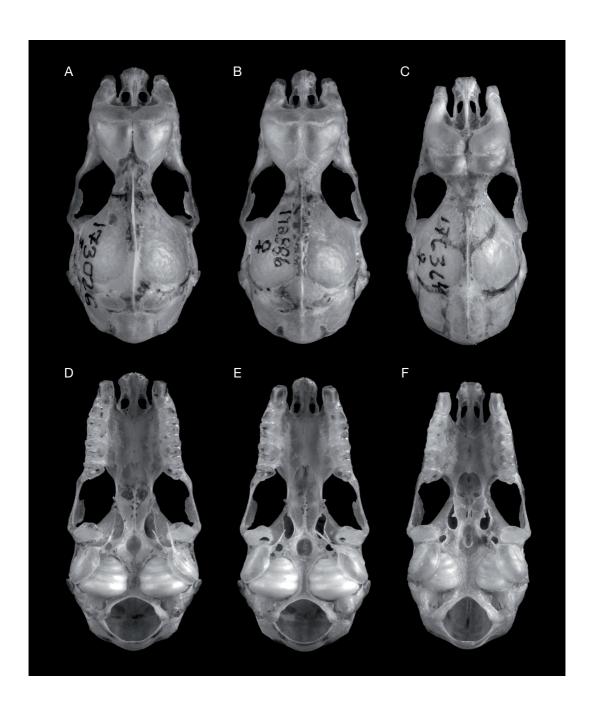


Fig. 4. — Vues dorsale (**A-C**) et ventrale (**D-F**) des crânes des adultes de *Triaenops* Dobson, 1871 malgaches (image FMNH Z94412d par John Weinstein): **A, D**, *T. auritus* G. Grandidier, 1912, \$\, Réserve spéciale d'Ankarana (FMNH 173026); **B, E**, *T. furculus* Trouessart, 1906, \$\, 3,7 km SSE Sarodrano, près de la localité de l'holotype (FMNH 172886); **C, F**, *T. rufus* A. Milne-Edwards, 1881, \$\, Réserve spéciale d'Ankarana (FMNH 176364).

structure est distinctement moins bien définie. Le bulbe tympanique est relativement petit chez les trois espèces. Chez *T. rufus* l'apophyse post-tympanique du squamosal s'étend à peu près à mi-hauteur du tympanal, tandis que chez les deux autres espèces il est notablement plus court. L'excroissance paraoccipitale chez *T. rufus* est notablement plus développée que chez *T. auritus* et *T. furculus*, elle est presque réduite chez *T. furculus*.

L'angle entre le condyle exoccipital et le supraoccipital est notablement plus ouvert chez T. rufus et T. auritus, dépassant 90°, tandis que chez T. furculus l'angle est fermé et fait moins de 90°. L'excroissance ptérygoïde chez T. rufus est distinctement allongée sur l'extension latérale, ce qui n'est pas présent chez les deux autres espèces. Des différences notables sont présentes au niveau de la forme de l'apophyse du coronoïde chez les trois espèces de *Triaenops*: chez T. rufus cette structure est épointée et arrondie, chez T. auritus elle est courte et légèrement pointue, enfin chez T. furculus elle est légèrement pointue et avec l'extrémité distale généralement courbée postérieurement et latéralement. L'apophyse angulaire est large et plus robustement construite chez T. auritus, intermédiaire chez T. furculus et réduite chez T. rufus. La plupart des spécimens de T. rufus ont un precondyle foramen sur la mandibule qu'on ne trouve pas chez les deux autres taxons.

Caractères dentaires. Chez T. rufus les incisives supérieures sont nettement bicuspides et inclinées vers l'intérieur, tandis que les pointes externes des cuspides chez T. auritus et T. furculus sont notablement moins développées et moins inclinées vers l'intérieur. La canine supérieure de *T. rufus* est longue et svelte avec un modèle tricuspide: cuspide postérieure bien développée, laquelle est pointue et obtenue près d'une demi-hauteur de la hampe, et cuspides antérieures petites. Au contraire, les canines de T. auritus et T. furculus sont distinctement plus courtes et la cuspide postérieure bien développée est absente. La PM² de *T. rufus* est située à la limite du bord externe buccal de la rangée dentaire, tandis que chez T. auritus et T. furculus elle est distinctement plus latérale du bord de la rangée de dents mais chez *T. auritus* elle est légèrement plus extérieure. Le rebord lingual de la PM⁴ est distinctement

plus développé chez *T. auritus* que chez les deux autres espèces, avec une cuspide antéro-linguale bien développée. Chez les trois espèces l'incisive inférieure est bicuspide et i₂ tricuspide.

ÉTAT DES HOLOTYPES

L'holotype de *Triaenops auritus* (MCZ 45080) est un spécimen momifié en très mauvaise condition dont le crâne n'a pas été extrait. Aucune mesure crânienne, ni dentaire, n'a pu être réalisée. Sur l'étiquette originale associée à ce spécimen une note manuscrite « envoi du Dr. Mazières Diégo Suarez – Madag. 1910 » indique clairement que Grandidier n'a pas capturé ce spécimen lui-même, le récolteur était probablement basé à Antsiranana. L'holotype de *T. furculus* (MNHN 1912-40) est préservé en alcool, et le crâne a été extrait mais perdu.

Il y a quelques ambiguïtés concernant les holotypes de T. rufus et T. humbloti, qui n'ont pas été clairement désignés dans la description originale de Trouessart (1906) ou dans le catalogue des holotypes des chauves-souris au MNHN (Rode 1941). L'observation des spécimens au MNHN indique que l'holotype désigné de T. rufus est catalogué sous le numéro MNHN 185 et celui de T. humbloti sous le numéro MNHN 1985-836. Le crâne de l'holotype désigné de T. rufus est en très mauvais état et le reste du corps est conservé en alcool. Le crâne de l'holotype désigné de T. humbloti a été extrait mais confondu avec ceux des paratypes. Il existe un crâne portant une étiquette indiquant une note manuscrite « probablement crâne de l'holotype 1985-836 ou des paratypes 1985-838, 1985-839 », le reste du corps est conservé en alcool. L'holotype désigné de ce dernier a été récolté par Humblot en 1880. Après son expédition à Madagascar, Humblot a fait naufrage au cap Gardafui en Somalie où il a pu récolter des spécimens qui ont été par la suite attribués à Madagascar, comme cela a été mentionné pour la collection d'oiseaux (Rand 1936).

CONCLUSIONS TAXINOMIQUES

Triaenops auritus

Sur la base de cette étude il est clair que le groupe furculus peut être scindé en une espèce du nord

(Ankarana, Analamerana et Andavakoera, OTU 2) distincte de celle des sites plus au sud (Namoroka à Tsimanampetsotsa, OTU 5, 12). Les résultats des analyses moléculaires (séquençage de 750 pb environ du gène mitochondrial cytochrome *b*), menés parallèlement sur les mêmes individus (Russell *et al.* sous presse) aboutissent à la même conclusion, avec 4,6 % de divergence entre les séquences de *T. auritus* et *T. furculus*.

Malgré l'ambiguïté qui persiste sur la localisation exacte du site de récolte de l'holotype de *T. auritus*, la couleur du pelage de l'holotype est vraiment très similaire à celle des individus adultes de l'OTU 2. C'est pour cette raison que nous attribuons le nom de *T. auritus* aux individus récoltés dans l'Ankarana, l'Analamerana et à Andavakoera.

Triaenops furculus

De Namoroka à Sept Lacs et Tsimanampetsotsa les faibles variations inter-OTU soulignent l'homogénéité du groupe *furculus*. Les individus de ces localités ont des mesures du même ordre de grandeur que celles de l'holotype qui a été récolté à Sarodrano, dans cette même région. La limite nord de la population de *T. furculus* et la limite sud de celle de *T. auritus* restent encore floues, mais elles se situent au nord de Mahajanga.

Triaenops rufus

Cette espèce ne montre pas de variation morphologique notable suivant un gradient latitudinal ou géographique. Une homogénéité à travers les sites de distribution connus est observée chez ce groupe. Il n'existe pas de preuves que cette espèce ne soit rencontrée que dans les formations humides de l'est de Madagascar comme le rapporte Milne-Edwards (1881) et comme cela a été repris par de nombreux auteurs.

Triaenops humbloti

La comparaison faite sur les ailes montre une différence significative de cette « forme » par rapport aux autres populations malgaches du groupe *rufus*. Quatre spécimens de cette forme ont été récoltés par Humblot, mais ces échantillons sont insuffisants pour résoudre le statut de « *humbloti* ». Il y a trop d'ambiguïté sur l'origine exacte des spécimens de ce taxon. Deux hypothèses peuvent être proposées:
1) la forme *humbloti* n'existe pas à Madagascar; et
2) la population malgache recensée par Humblot reste inconnue des chercheurs modernes.

Remerciements

Nous tenons à présenter tous nos remerciements aux différents responsables des Eaux et Forêts et de l'Association nationale pour la Gestion des Aires protégées, pour avoir autorisé la conduite de ces inventaires et la récolte des chauves-souris. Nos sincères remerciements s'adressent particulièrement à Scott Cardiff, à Fanja Ratrimomanarivo et à Vola Razakarivony pour leur aide sur le terrain et Frontier-Madagascar pour l'accès à leurs spécimens. Toute notre gratitude aux responsables de collection, Jean-Marc Pons et Ronan Kirsch (MNHN) et Judith Chupasko (MCZ) pour nous avoir donné l'autorisation de travailler sur les différents spécimens. Lucienne Wilmé a généreusement préparé la Figure 1 et John Weinstein les Figures 3 et 4. Les travaux de terrain et les visites muséologiques pour cette étude ont été financés par la Fondation Volkswagen et la National Geographic Society. Enfin, nous remercions Stéphane Aulagnier, Jean-Marc Pons et Lucienne Wilmé pour avoir apporté leurs corrections et commentaires instructifs à ce manuscrit.

RÉFÉRENCES

ALLEN G. M. 1939. — A checklist of African mammals. Bulletin of the Museum of Comparative Zoology, Harvard 83: 1-763.

DORST J. 1948. — Les chiroptères du genre *Triaenops* Dobson (hipposidérinés). *Mammalia* 12: 15-21.

EGER J. L. & MITCHELL L. 2003. — Chiroptera, bats, in GOODMAN S. M. & BENSTEAD J. P. (eds), *The Natural History of Madagascar*. The University of Chicago Press, Chicago: 1287-1298.

GOODMAN S. M. & CARDIFF S. G. 2004. — A new species of *Chaerephon* (Molossidae) from Madagascar with notes on other members of the family. *Acta Chiropterologica* 6: 227-247.

GOODMAN S. M. & RANIVO J. 2004. — The taxonomic status of *Neoromicia somalicus malagasyensis*. *Mammalian Biology* 69: 434-438.

GOODMAN S. M., ANDRIAFIDISON D., ANDRIANAIVOA-RIVELO R., CARDIFF S. G., IFTICENE E., JENKINS R. K.

- B., KOFOKY A., MBOHOAHY T., RAKOTONDRAVONY D., RANIVO J., RATRIMOMANARIVO F., RAZAFIMANAHAKA J. & RACEY P. A. 2005a. The distribution and conservation of bats in the dry regions of Madagascar. *Animal Conservation* 8: 153-165.
- GOODMAN S. M., JENKINS R. K. B. & RATRIMOMANARIVO F. H. 2005b. A review of the genus *Scotophilus* (Mammalia, Chiroptera, Vespertilionidae) on Madagascar, with the description of a new species. *Zoosystema* 27 (4): 867-882.
- GOODMAN S. M., RATRIMOMANARIVO F. H. & RAN-DRIANANDRIANINA F. H. 2006a. — A new species of *Scotophilus* (Chiroptera: Vespertilionidae) from western Madagascar. *Acta Chiropterologica* 8: 21-37.
- GOODMAN S. M., CARDIFF S. G., RANIVO J., RUSSELL A. L. & YODER A. D. 2006b. — A new species of *Emballonura* (Chiroptera: Emballonuridae) from the dry regions of Madagascar. *American Museum Novitates* 3538: 1-24.
- HILL J. E. 1982. A review of the leaf-nosed bats Rhinonycteris, Cloeotis and Triaenops (Chiroptera: Hipposideridae). Bonner Zoologisches Beiträge 33: 165-177.
- MILNE-EDWARDS A. 1881. Observations sur quelques animaux de Madagascar. *Comptes Rendus des Séances*

- de l'Académie des Sciences de Paris 91: 1034-1038.
- Peterson R. L., Eger J. L. & MITCHELL L. 1995. Chiroptères. Faune de Madagascar 84: 1-204.
- RAND A. L. 1936. The distribution and habits of Madagascar birds. Summary of the field notes of the Mission zoologique franco-anglo-américaine à Madagascar. Bulletin of the American Museum of Natural History 72: 143-499.
- RODE P. 1941. Catalogue des types de mammifères du Muséum national d'Histoire naturelle. II. Ordre des chiroptères. *Bulletin du Muséum national d'Histoire naturelle* Paris, 2° sér., 13: 227-252.
- Russell A. L., Ranivo J., Palkovacs E. P., Goodman S. M. & Yoder A. D. sous presse. Working at the interface of phylogenetics and population genetics: a biogeographic analysis of *Triaenops* spp. (Chiroptera: Hipposideridae). *Molecular Ecology*.
- SIMMONS N. B. 2005. Order Chiroptera, in WILSON D. E. & REEDER D. M. (eds), Mammal Species of the World: A Taxonomic and Geographical Reference. 3rd ed. Smithsonian Institution Press, Washington, D.C.: 312-529.
- TROUESSART E. 1906. Description des mammifères nouveaux d'Afrique et de Madagascar. *Bulletin du Muséum national d'Histoire naturelle*, Paris 7: 443-447.

Soumis le 15 novembre 2004; accepté le 7 février 2006.

ANNEXE 1

Liste des spécimens de *Triaenops* Dobson, 1871 utilisés pour les études morphologiques. Les abréviations des aires protégées sont: **PN**, Parc national; **RNI**, Réserve naturelle intégrale; **RS**, Réserve spéciale.

Triaenops auritus

Province d'Antsiranana, RS d'Ankarana, Campement des Anglais (Anilotra), 125 m, 12°54,5'S, 49°06,6'E (FMNH 176278-176289). — RS d'Ankarana, Grotte des chauves-souris, 120 m, 12°57,4'S, 49°07,1'E (FMNH 173035-173103). — RS d'Ankarana, Grotte du 3e canyon, près de la rivière Andôkotôkana, 50 m, 12°56,5'S, 49°03,3'E (FMNH 173004-173027). — RS d'Ankarana, Grotte d'Andrafiabe, 50 m, 12°55,9'S, 49°03,4'E (FMNH 169724, 176362). — RS d'Ankarana, Grotte d'Antsirônandoha, 100 m, 12°53,3'S, 49°05,9'E (FMNH 173028-173033). — RS d'Analamerana, forêt de Bobakindro, Grotte de Bazaribe, 90 m, 12°42,7'S, 49°28,4'E (FMNH 178816, 178817). — RS d'Analamerana, Forêt d'Ankavanana, 200 m, 12°47,0'S, 49°22,1'E (FMNH 178818-178820). — Forêt classée d'Andavakoera, 1,5 km sud-est de Betsiaka, 60 m, 13°07,8'S, 49°14,0'E (FMNH 179365-179373).

Triaenops furculus

Province de Mahajanga, RNI de Namoroka, 2,6 km nord-ouest d'Andranomavo, forêt d'Ambovonomby, 200 m, 16°28,2'S, 45°20,9'E (FMNH 175779-175783). — RNI de Namoroka, source de la rivière Mandevy, 100 m, 16°22,8'S, 45°20,7'E (FMNH 175784-175795). — RNI de Namoroka, Grotte d'Andriabe, 3,3 km sud-est du village de Namoroka, 140 m, 16°24,6'S, 45°18,9'E (FMNH 178559-178562). — Sud de Soalala, Mission franco-anglo-américaine (MNHN CG 1947-211a, b et 1221). — PN de Bemaraha, Grotte d'Anjohimbazimba, 110 m, 18°41,7'S, 44°43,0'E (FMNH 169680).

Province de Toliara, forêt des Mikea, 8,4 km au sud sudest de Befandefa, 50 m, 22°13,0'S, 43°19,8'E (FMNH 176159, 176161-176245). — Forêt de Kirindy-Mite, 13 km ouest Marofihitsa, 30 m, 20°47,4'S, 44°08,8'E (FMNH 176069). — PN de Tsimanampetsotsa, 6,5 km nord-est de Efoetse, «dans la forêt aux environs de la Grotte de Mitoho», 50 m, 24°03,0'S, 43°45,0'E (FMNH 173152, 173163-173172). — Lac Tsimanampetsotsa (MNHN 861-862). — Grotte de Sarodrano en bord de mer, niveau de la mer, 23°32,9'S, 43°44,8'E (MNHN CG 1912-40, CG 1912-40b, c, CG 1997-1858-1867, FMNH 172886-172887). — Grotte de Bisihiko, 5 m, 23°32,4'S, 43°46,0'E (FMNH 172888-172895). — Sept

Lacs (FMNH 176490-176496). — Antafiky (FMNH 173243-173244).

Triaenops rufus

Province d'Antsiranana, RS d'Ankarana, Campement des Anglais (Anilotra), 125 m, 12°54,5'S, 49°06,6'E (FMNH 176290-176299). — RS d'Ankarana, Grotte d'Andrafiabe, 50 m, 12°55,9'S, 49°03,4'E (FMNH 176363-176365, 169709). — RS d'Analamerana, forêt de Bobakindro, Grotte de Bazaribe, 90 m, 12°42,7'S, 49°28,4'E (FMNH 178821-178824). — Montagne des Français (MNHN CG 1985-487-489). — Tsaratanana (MNHN 353). Province de Mahajanga, RNI de Namoroka, 2,6 km nordouest d'Andranomavo, Forêt d'Ambovonomby, 200 m, 16°28,2'S, 45°20,9'E (FMNH 175796-175798). — RNI de Namoroka, Grotte d'Ampidiranambaja, 4 km sud sud-ouest du village de Namoroka, 120 m, 16°25,9'S, 45°17,2'E (FMNH 178563-178564). — Mitsinjo, Grotte d'Anjohibe, 100 m, 15°32,3'S, 46°53,2'E (MNHN CG 1985-480-483). — PN de Bemaraha, Grotte d'Anjohimbazimba, 110 m, 18°41,7'S, 44°43,0'E (FMNH 172742, 172762-172784).

Province de Toliara, forêt Kirindy (CFPF), fleuve Kirindy, 30 m, 20°04,6'S, 44°40,5'E (FMNH 172880-172884). — Forêt Kirindy (CFPF), Piste Conoco, 35 m, 20°04,0'S, 44°39,3'E (FMNH 176035-176038). — PN de Kirindy-Mite, 13 km ouest Marofihitsa, 30 m, 20°47,4'S, 44°08,8'E (FMNH 176055-176066). — PN de Kirindy-Mite, 0,8 km sud-ouest Manahy, 5 m, 20°52,1'S, 43°54,5'E (FMNH 176067-176068). — PN d'Isalo, le long du fleuve Sahanafa, 550 m, 22°19,0'S, 45°17,6'E (FMNH 175978-175985). — PN de Tsimanampetsotsa, 6,5 km nord-est de Efoetse, « dans la forêt autour de la grotte de Mitoho », 50 m, 24°03,0'S, 43°45,0'E (FMNH 146780-146787, 173173-173188, 173153). — Sarodrano, Grotte de Bisihiko, 5 m, 23°32,4'S, 43°46,0'E (FMNH 172896-172904). — Sept Lacs (FMNH 173245-173249, 176497-176502).

Madagascar (MNHN CG 1985-480-1985-482, CG 1947-312).

Madagascar, côte est (MNHN CG 1997-1854-1997-1857).

Triaenops humbloti

Madagascar, côte est (MNHN 1985.839-842).

ANNEXE 2

Mesures du groupe *Triaenops furculus*. Les mesures sont présentées comme suit : moyenne ± déviation standard, mesures minimum-maximum et nombre de spécimens. Lorsque ce dernier est inférieur ou égal à deux les statistiques descriptives ne sont pas présentées. Les analyses de variance sont effectuées entre les individus de classe 2 (sub-adultes) et classe 3 (adultes) de chaque OTU. 2, Ankarana + Analamerana + Andavakoera; 5, Namoroka; 6, Bemaraha; 9, Kirindy-Mite; 10, Forêt des Mikea; 12, Sarodrano + Tsimanampetsotsa; 13, Sept Lacs. Voir Tableaux 3 et 4 pour les variables significatives. Voir Tableau 1 pour les explications des acronymes.

1. Mesures externes

Mâle	LT	LQ	PIED	OREIL	AB	POIDS
OTU 2	$73,2 \pm 2,68$	$22,2 \pm 1,42$	$7,4 \pm 0,73$	$17,9 \pm 0,93$	$46,4 \pm 1,51$	$5,9 \pm 0,63$
Classe 2+3	(67,0-78,0, n=17)	(19,0-25,0, n=17)	(6,0-9,0, n=16)	(16,0-19,0, n=17)	(43,9-50,0, n=17)	(4,9-6,7, n=17)
OTU 5	74,7 ± 1,80	22,4 ± 1,27	7.0 ± 0.63	$17,6 \pm 0,79$	$45,7 \pm 0,95$	5,1 ± 1,16
Classe 2+3	(73,0-78,0, n=7)	(21,0-24,0, n=7)	(6,0-8,0, n=6)	(16,0-18,0, n=7)	(45,0-47,0, n=7)	(3,6-6,9, n=7)
OTU 6	72,0	24,0	5,0	16,0	45,0	4,7
Classe 3	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 12	$71,4 \pm 1,67$	$22,5 \pm 1,97$	6.8 ± 0.41	$18,7 \pm 0,52$	$44,0 \pm 0,63$	$6,0 \pm 0,58$
Classe 2+3	(70,0-74,0, n=5)	(19,0-25,0, n=6)	(6,0-7,0, n=6)	(18,0-19,0, n=6)	(43,0-45,0, n=6)	(5,2-6,9, n=6)
Femelle						
OTU 2	76,9 ± 2,84	24,0 ± 1,57	7,7 ± 0,61	18,9 ± 1,12	48,8 ± 1,35	6,5 ± 0,73
Classe 2+3	(70,0-84,0, n=36)	(22,0-28,0, n=36)	(7,0-9,0, n=36)	(15,0-20,0, n=36)	(46,0-51,0, n=36)	(5,4-8,0, n=36)
OTU 5	77,0 ± 1,90	23,2 ± 1,78	$7,1 \pm 0,30$	$18,9 \pm 0,70$	46,5 ± 1,75	$6,1 \pm 0,84$
Classe 2+3	(75,0-80,0, n=11)	(21,0-27,0, n=11)	(7,0-8,0, n=11)	(18,0-20,0, n=11)	(42,0-49,0, n=11)	(3,8-7,1, n=11)
OTU 9	79,0	21,0	7,0	19,0	45,0	8,1
Classe 2	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 10	75,0	21,0	7,0	16,0	46,0	6,4
Classe 2	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 12	$75,5 \pm 1,73$	$23,5 \pm 1,29$	$7,5 \pm 0,58$	$18,3 \pm 0,50$	$46,3 \pm 0,96$	$6,5 \pm 0,90$
Classe 2+3	(73,0-77,0, n=4)	(22,0-25,0, n=4)	(7,0-8,0, n=4)	(18,0-19,0, n=4)	(45,0-47,0, n=4)	(5,6-7,7, n=4)

2. Mesures crâniennes

Classe 2+3 (4,8-5,2, n=7)

(11,0-11,2, n=7)

Mâle	LCR	LCB	ZYGO	HBC	INTER	MAST	ROST
Classe 2+3	(16,8-18,1, n=16)	(14,8-15,5, n=15)	8,7 ± 0,15 (8,5-8,9, n=17 8,6 ± 0,28) (2,2-2,4, n=17	8,7 ± 0,11) (8,4-8,8, n=16 8,6 ± 0,12	
OTU 6	16,5		8,5	5,6	2,4	8,6	6,0
OTU 10	(n=1) 16,8 (n=1)	14,7	(n=1) 8,6 (n=1)	(n=1) 6,3 (n=1)	(n=1) 2,3 (n=1)	(n=1) 8,6 (n=1)	(n=1) 6,3 (n=1)
OTU 12	16,6 ± 0,25		$8,5 \pm 0,22$	5.8 ± 0.14	$2,3 \pm 0,15$	$8,5 \pm 0,08$	$6,3 \pm 0,18$
Femelle	(10,2 10,0, 11 0)	(,,.,	(0,1 0,0,11 0)	(0,0 0,1, 11 0)	(2,0 2,0, 0)	(0, 1 0,0, 11 0)	(0,1 0,0,11 0)
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 9	$17,3 \pm 0,28$	(15,0-16,2, n=36) 15,2 ± 0,28 (14,6-15,5, n=10) 15,2	8,7 ± 0,16 (8,5-9,0, n=11 8,7) (5,5-6,3, n=35, 5,7 ± 0,19) (5,3-6,0, n=10,5,7) (2,3-2,7, n=36 2,4 ± 0,11) (2,2-2,6, n=11 2,4	$8,7 \pm 0,14$	$6,6 \pm 0,28$
OTU 12	$17,3 \pm 0,15$	(n=1) 15,2 ± 0,21 (15,0-15,5, n=7)	$8,6 \pm 0,18$	(n=1) 5,8 ± 0,26 (5,6-6,3, n=6)	(n=1) 2,3 ± 0,08 (2,3-2,5, n=7)	$8,7 \pm 0,10$	6.7 ± 0.21
Mâle	PAL	MAND	CORCON	CONA	N LG	NAS	MAXNAS
OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3	4,6 (n=1) 5,1 (n=1) 4,8 ± 0,15	$11,2 \pm 0,19$ $(10,8-11,5, n=10,9 \pm 0,17)$ $(10,7-11,2, n=11,0)$ $(n=1)$ $10,8$ $(n=1)$ $10,8 \pm 0,19$ $(10,5-11,1, n=1)$	17) $(3,1-3,5, n)$ $3,3 \pm 0,12$ 7) $(3,2-3,5, n)$ 3,3 (n=1) 3,4 (n=1) $3,3 \pm 0,11$	=17) (1,9-2,1 2,0 ± 0 =7) (1,8-2,2 2,0 (n=1) 2,0 (n=1) 2,1 ± 0	3, n=17) (1,7 ,12 2,1 2, n=7) (1,8 2,1 (n= 1,9 (n= ,12 2,0	7-2,6, n=17) ± 0,26 3-2,5, n=8) 1) ± 0,15	5,6 ± 0,06 (5,5-5,7, n=17) 5,4 ± 0,19 (5,1-5,7, n=8) 5,2 (n=1) 5,4 (n=1) 5,4 ± 0,14 (5,2-5,6, n=8)
Femelle							
OTU 5 Classe 2+3 OTU 9 Classe 2 OTU 12	5,2 ± 0,18 6 (4,9-5,7, n=36) 5,1 ± 0,16 6 (4,8-5,3, n=11) 5,0 (n=1) 5,0 ± 0,15	$11,2 \pm 0,20$	3.4 ± 0.09 11) (3,3-3,6, n 3,5 (n=1) 3.4 ± 0.05	=36) (1,9-2,5 2,0 ± 0 =11) (1,8-2,2 2,0 (n=1) 2,0 ± 0	3, n=36) (2,0 ,11 2,3 2, n=11) (2,1 2,0 (n=	0-2,8, n=36) ± 0,13 -2,6, n=11) 1) ± 0,20	5,9 ± 0,14 (5,6-6,2, n=36) 5,8 ± 0,10 (5,6-5,9, n=11) 5,7 (n=1) 5,7 ± 0,08

(3,4-3,5, n=7)

(1,9-2,1, n=7)

(2,0-2,6, n=7)

(5,7-5,9, n=7)

3. Mesures dentaires

Mâle	I 1 -M 3	MOLS	C1-C1	M3-M3	lg M	HCS	I ₁ -m ₃
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3	6,4 ± 0,11 (6,1-6,5, n=17) 6,1 ± 0,10 (5,9-6,2, n=8) 6,1 (n=1) 6,3 (n=1) 6,2 ± 0,10 (6,0-6,3, n=9)	4,8 ± 0,14 (4,5-5,0, n=17) 4,5 ± 0,14 (4,3-4,7, n=8) 4,5 (n=1) 5,0 (n=1) 4,6 ± 0,11 (4,5-4,8, n=9)	4.4 ± 0.18 (4.0-4.6, n=8) 4.4 (n=1) 4.6 (n=1) 4.4 ± 0.20	6,3 ± 0,15 (6,0-6,6, n=17) 6,1 ± 0,18 (5,8-6,3, n=8) 6,1 (n=1) 6,3 (n=1) 6,2 ± 0,13 (5,9-6,3, n=8)	$\begin{array}{c} 1,4\pm0,08\\ 1,3-1,5,n=17\\ 1,3\pm0,07\\ 1,2-1,4,n=8)\\ 1,5\\ (n=1)\\ 1,5\\ (n=1)\\ 1,4\pm0,12\\ (1,2-1,5,n=9) \end{array}$	2,0 (n=1) 2,4 (n=1) 2,4 ± 0,15	7,4 ± 0,15 (7,1-7,7, n=17) 7,1 ± 0,15 (6,9-7,3, n=7) 7,4 (n=1) 7,2 (n=1) 7,1 ± 0,12 (6,9-7,2, n=8)
Femelle							
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 9 Classe 2 OTU 12 Classe 2+3	$6,3 \pm 0,15$	$4,7 \pm 0,13$	4,4 ± 0,06 (4,3-4,5, n=11) 4,5 (n=1) 4,5 ± 0,10	$6,3 \pm 0,12$	$1,3 \pm 0,04$	$2,4 \pm 0,13$ 2,1-2,6, n=36 $2,4 \pm 0,14$ 2,0-2,5, n=11 2,4 2,1 2,1 $2,2 \pm 0,17$ 2,0-2,5, n=7	7,3 ± 0,12 (7,1-7,5, n=11) 7,4 (n=1) 7,3 ± 0,09
Mâle	moli	molcon	lg m	hci	h	ım ₂	
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3	$6,0 \pm 0,12$ (5,8-6,1, n=17) $5,7 \pm 0,14$ (5,6-6,0, n=7) 5,7 (n=1) 5,7 (n=1) $5,7 \pm 0,12$ (5,6-5,9, n=9)	5,1 ± 0,20 (4,9-5,4, n) 5,0 (n=1) 5,0 (n=1) 5,0 ± 0,15	=17) (0,9-1,0 0,9 ± 0, =7) (0,8-0,9 0,9 (n=1) 0,9 (n=1) 0,9 ± 0,	0, n=17) (2,0- 0,05 2,0 : 0, n=7) (1,9- 2,0 (n=1 2,0 (n=1 04 2,0 :	-2,4, n=17) (' ± 0,10 1 -2,1, n=8) (' 1) (1) (1) ± 0,12 1	,5 ± 0,16 1,1-1,7, n=17) ,4 ± 0,08 1,3-1,5, n=7) ,3 n=1) ,4 ± 0,16 1,1-1,6, n=9)	
Femelle							
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 9 Classe 2 OTU 12 Classe 2+3	6,1 ± 0,12 (5,9-6,4, n=36 5,9 ± 0,13 (5,7-6,2, n=1 5,9 (n=1) 5,9 ± 0,05 (5,8-5,9, n=7)	5,3 ± 0,15 (5,1-5,6, n 5,3 (n=1) 5,3 ± 0,10	=36) (0,9-1,0 0,9 ± 0, =11) (0,9-1,0 0,9 (n=1) 0,9 ± 0,	0, n=36) (1,8- 04 1,8 : 0, n=11) (1,7- 1,8 (n=1) 04 1,8 :	-2,1, n=36) (" ± 0,06 1 -1,9, n=11) (" 1) ((1) ± 0,08 1	,4 ± 0,10 1,2-1,7, n=36) ,4 ± 0,16 1,0-1,5, n=11) ,4 n=1) ,4 ± 0,20 1,0-1,6, n=7)	

4. Mesures alaires (mesures de l'holotype en gras à l'OTU 12)

Mâle	LG1D	LG2D	LG3D	LG31	LG32	LG4D	LG41
OTU 2	6,4 ± 0,45	33,2 ± 0,92	31,1 ± 0,79	11,2 ± 0,56	15,8 ± 0,68	31,1 ± 0,71	9,3 ± 0,44
	6,4 ± 0,45 3 (6,0-7,0, n=20)		(30,0-32,5, n=20)		(14,5-17,0, n=20)	(30,0-32,5, n=20)	9,5 ± 0,44 (8,5-10,0, n=20)
OTU 5	6.7 ± 0.44	(31,5-35,0,11=20) 32.4 ± 1.67					
			30,3 ± 1,20	11,4 ± 0,33	$15,3 \pm 0,67$	30,4 ± 1,22	9,3 ± 0,36
	3 (6,0-7,0, n=9)	(28,5-34,0, n=9)	(29,0-32,5, n=9)	(11,0-12,0, n=9)	(14,0-16,0, n=9)	(28,5-32,0, n=9)	(8,5-9,5, n=9)
OTU 6	7,0	33,0	29,0	10,0	15,0	30,0	9,0
Classe 3	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 10	6,0	32,0	29,0	10,5	16,0	29,5	9,0
Classe 2	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 12	6,4 ± 0,40 ; 6,0	32,3 ± 1,14 ; 31,5	$30,1 \pm 1,05$; 30,0	10,8 ± 0,59 ; 10,0	15,6 ± 0,79 ; 15,5	30,3 ± 1,10 ; 30,0	8,9 ± 0,41 ; 8,5
Classe 2+3	3 (6,0-7,0, n=15)	(30,5-34,0, n=15)	(28,0-32,0, n=15)	(10,0-12,0, n=15)	(14,5-17,0, n=15)	(29,0-32,0, n=15)	(8,0-9,5, n=14)
OTU 13							
Classe 2	(6,0-6,5, n=2)	(31,0-32,0, n=2)	(28,5-29,0, n=2)	(10,0-10,5, n=2)	(15,0-15,5, n=2)	(28,0-29,5, n=2)	(8,5-9,0, n=2)
Femelle							
OTU 2	6,6 ± 0,52	34,9 ± 1,12	32,6 ± 0,92	11,6 ± 0,57	16,6 ± 0,84	32,5 ± 0,82	9,7 ± 0,39
	3 (6,0-8,0, n=36)	(32,5-37, n=36)	- ,,-	(10,5-13,0, n=36)	(13,5-18,0, n=36)	(31,0-34,0, n=35)	(9,0-10,5, n=36)
OTU 5	6.8 ± 0.37	34,1 ± 1,60	31.5 ± 1.22	11.5 ± 0.50	16,5 ± 0,73	31.5 ± 1.37	9.4 ± 0.35
	3 (6,0-7,0, n=14)		(28,5-33,0, n=14)		(15,0-18,0, n=14)	(28,5-34,0, n=14)	(9,0-10,0, n=14)
OTU 9	7.0	33.0	31,5	11,0	15,0	31,0	9.0
Classe 2	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 10	7.0	33,5	31,5	11,0	16,5	31,0	9,5
Classe 2	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 12	6.3 ± 0.38	33.9 ± 1.29	32.1 ± 0.88	11.4 ± 0.35	16.8 ± 0.46	31.8 ± 0.70	9.4 ± 0.42
	3 (6,0-7,0, n=8)	(31,0-35,0, n=8)	(31,0-33,0, n=8)	(11,0-12,0, n=8)	(16,0-17,0, n=8)	(31,0-32,5, n=8)	(9,0-10,0, n=8)
OTU 13	6.7 ± 0.27	,	,		,	, , , , ,	9,0 ± 0,22
		34,4 ± 1,08	$31,4 \pm 0,42$	11,2 ± 0,27	15,1 ± 1,34	$31,4 \pm 0,42$	
	3 (6,5-7,0, n=5)	(33,5-36,0, n=5)	(31,0-32,0, n=5)	(11,0-11,5, n=5)	(14,0-17,0, n=5)	(31,0-32,0, n=5)	(9,0-9,5, n=5)
Mâle	LG42	LG5D	LG51	LG52	Fext	Fint	Finf
OTU 2	7,9 ± 0,18	27,2 ± 0,66	12,3 ± 0,73	9,7 ± 0,34	4,2 ± 0,42	4,9 ± 0,41	1,7 ± 0,17
OTU 2 Classe 2+3	7,9 ± 0,18 3 (7,5-8,0, n=20)	27,2 ± 0,66 (25,5-28,0, n=20)	12,3 ± 0,73 (10,0-13,5, n=20)	9,7 ± 0,34 (9,0-10,5, n=20)	4,2 ± 0,42 (3,3-4,8, n=20)	4,9 ± 0,41 (4,0-5,4, n=20)	1,7 ± 0,17 (1,3-2,0, n=20)
OTU 2 Classe 2+3 OTU 5	7,9 ± 0,18 3 (7,5-8,0, n=20) 7,9 ± 0,30	27,2 ± 0,66 (25,5-28,0, n=20) 26,6 ± 0,92	12,3 ± 0,73 (10,0-13,5, n=20) 12,3 ± 0,50	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19
OTU 2 Classe 2+3 OTU 5 Classe 2+3	7,9 ± 0,18 3 (7,5-8,0, n=20) 7,9 ± 0,30 3 (7,5-8,5, n=9)	27,2 ± 0,66 (25,5-28,0, n=20) 26,6 ± 0,92 (25,0-28,0, n=9)	12,3 ± 0,73 (10,0-13,5, n=20) 12,3 ± 0,50 (12,0-13,5, n=9)	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9)	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9)	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9)
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6	7,9 ± 0,18 3 (7,5-8,0, n=20) 7,9 ± 0,30 3 (7,5-8,5, n=9) 7,5	27,2 ± 0,66 (25,5-28,0, n=20) 26,6 ± 0,92 (25,0-28,0, n=9) 26,5	12,3 ± 0,73 (10,0-13,5, n=20) 12,3 ± 0,50 (12,0-13,5, n=9) 12,5	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3	7,9 ± 0,18 3 (7,5-8,0, n=20) 7,9 ± 0,30 3 (7,5-8,5, n=9) 7,5 (n=1)	27,2 ± 0,66 (25,5-28,0, n=20) 26,6 ± 0,92 (25,0-28,0, n=9) 26,5 (n=1)	12,3 ± 0,73 (10,0-13,5, n=20) 12,3 ± 0,50 (12,0-13,5, n=9) 12,5 (n=1)	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0 (n=1)	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1)	4.9 ± 0.41 (4.0-5.4, n=20) 4.8 ± 0.27 (4.3-5.2, n=9) 4.6 (n=1)	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4 (n=1)
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10	7,9 ± 0,18 3 (7,5-8,0, n=20) 7,9 ± 0,30 3 (7,5-8,5, n=9) 7,5	27,2 ± 0,66 (25,5-28,0, n=20) 26,6 ± 0,92 (25,0-28,0, n=9) 26,5	12,3 ± 0,73 (10,0-13,5, n=20) 12,3 ± 0,50 (12,0-13,5, n=9) 12,5	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3	7,9 ± 0,18 3 (7,5-8,0, n=20) 7,9 ± 0,30 3 (7,5-8,5, n=9) 7,5 (n=1)	27,2 ± 0,66 (25,5-28,0, n=20) 26,6 ± 0,92 (25,0-28,0, n=9) 26,5 (n=1)	12,3 ± 0,73 (10,0-13,5, n=20) 12,3 ± 0,50 (12,0-13,5, n=9) 12,5 (n=1)	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0 (n=1)	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1)	4.9 ± 0.41 (4.0-5.4, n=20) 4.8 ± 0.27 (4.3-5.2, n=9) 4.6 (n=1)	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4 (n=1)
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10	7,9 ± 0,18 3 (7,5-8,0, n=20) 7,9 ± 0,30 3 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1)	27,2 ± 0,66 (25,5-28,0, n=20) 26,6 ± 0,92 (25,0-28,0, n=9) 26,5 (n=1) 26,0	12,3 ± 0,73 (10,0-13,5, n=20) 12,3 ± 0,50 (12,0-13,5, n=9) 12,5 (n=1) 12,0 (n=1)	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0 (n=1) 9,5 (n=1)	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,4	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4 (n=1) 1,7
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0	27.2 ± 0.66 (25.5-28.0, n=20) 26.6 ± 0.92 (25.0-28.0, n=9) 26.5 (n=1) 26.0 (n=1)	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\ ;\ \textbf{11,5} \end{array}$	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0 (n=1) 9,5 (n=1) 9,6 ± 0,47; 9,5	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,4 (n=1)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1)	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4 (n=1) 1,7 (n=1)
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0	$27,2 \pm 0,66$ (25,5-28,0, n=20) $26,6 \pm 0,92$ (25,0-28,0, n=9) 26,5 (n=1) 26,0 (n=1) $26,6 \pm 1,00$; 27,0	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\ ;\ \textbf{11,5} \end{array}$	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0 (n=1) 9,5 (n=1) 9,6 ± 0,47; 9,5	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,4 (n=1) 4,7 ± 0,49; 5,0	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4	$1,7 \pm 0,17$ (1,3-2,0, n=20) $1,7 \pm 0,19$ (1,3-1,9, n=9) 1,4 (n=1) 1,7 (n=1) $2,0 \pm 0,34$; 2,3
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0	$27,2 \pm 0,66$ (25,5-28,0, n=20) $26,6 \pm 0,92$ (25,0-28,0, n=9) 26,5 (n=1) 26,0 (n=1) $26,6 \pm 1,00$; 27,0	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\ ;\ \textbf{11,5} \end{array}$	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0 (n=1) 9,5 (n=1) 9,6 ± 0,47; 9,5	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,4 (n=1) 4,7 ± 0,49; 5,0	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4	$1,7 \pm 0,17$ (1,3-2,0, n=20) $1,7 \pm 0,19$ (1,3-1,9, n=9) 1,4 (n=1) 1,7 (n=1) $2,0 \pm 0,34$; 2,3
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0 8 (7,5-8,0, n=15)	$27.2 \pm 0.66 \\ (25,5-28,0, n=20) \\ 26.6 \pm 0.92 \\ (25,0-28,0, n=9) \\ 26,5 \\ (n=1) \\ 26,0 \\ (n=1) \\ 26,6 \pm 1,00 ; \textbf{27,0} \\ (25,0-28,0, n=14)$	$\begin{array}{c} 12,3\pm0,73\\ (10,0\text{-}13,5,\text{n=}20)\\ 12,3\pm0,50\\ (12,0\text{-}13,5,\text{n=}9)\\ 12,5\\ (\text{n=}1)\\ 12,0\\ (\text{n=}1)\\ 12,0\pm0,48\ ;\textbf{11,5}\\ (11,5\text{-}13,0,\text{n=}15) \end{array}$	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0 (n=1) 9,5 (n=1) 9,6 ± 0,47; 9,5 (9,0-10,5, n=15)	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,4 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15)	$\begin{array}{c} 1.7 \pm 0.17 \\ (1.3 - 2.0, n = 20) \\ 1.7 \pm 0.19 \\ (1.3 - 1.9, n = 9) \\ 1.4 \\ (n = 1) \\ 1.7 \\ (n = 1) \\ 2.0 \pm 0.34 \; ; \; \textbf{2.3} \\ (1.3 - 2.5, n = 15) \end{array}$
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0 8 (7,5-8,0, n=15)	$27.2 \pm 0.66 \\ (25,5-28,0, n=20) \\ 26.6 \pm 0.92 \\ (25,0-28,0, n=9) \\ 26,5 \\ (n=1) \\ 26,0 \\ (n=1) \\ 26,6 \pm 1,00 ; \textbf{27,0} \\ (25,0-28,0, n=14)$	$\begin{array}{c} 12,3\pm0,73\\ (10,0\text{-}13,5,\text{n=}20)\\ 12,3\pm0,50\\ (12,0\text{-}13,5,\text{n=}9)\\ 12,5\\ (\text{n=}1)\\ 12,0\\ (\text{n=}1)\\ 12,0\pm0,48\ ;\textbf{11,5}\\ (11,5\text{-}13,0,\text{n=}15) \end{array}$	9,7 ± 0,34 (9,0-10,5, n=20) 9,4 ± 0,49 (9,0-10,0, n=9) 10,0 (n=1) 9,5 (n=1) 9,6 ± 0,47; 9,5 (9,0-10,5, n=15)	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,4 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15)	$\begin{array}{c} 1.7 \pm 0.17 \\ (1.3 - 2.0, n = 20) \\ 1.7 \pm 0.19 \\ (1.3 - 1.9, n = 9) \\ 1.4 \\ (n = 1) \\ 1.7 \\ (n = 1) \\ 2.0 \pm 0.34 \; ; \; \textbf{2.3} \\ (1.3 - 2.5, n = 15) \end{array}$
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 12 Classe 2 Femelle OTU 2	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24; 8,0 8 (7,5-8,0, n=15) (7,0-7,5, n=2)	27.2 ± 0.66 $(25.5-28.0, n=20)$ 26.6 ± 0.92 $(25.0-28.0, n=9)$ 26.5 $(n=1)$ 26.0 $(n=1)$ 26.6 ± 1.00 ; 27.0 $(25.0-28.0, n=14)$ $(25.0-26.0, n=2)$ 28.8 ± 0.90	$12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\ ;\textbf{11,5}\\ (11,5-13,0,n=15)\\ (11,0-12,0,n=2)\\ 12,9\pm0,42$	$\begin{array}{c} 9.7 \pm 0.34 \\ (9.0\text{-}10.5, n\text{=}20) \\ 9.4 \pm 0.49 \\ (9.0\text{-}10.0, n\text{=}9) \\ 10.0 \\ (n\text{=}1) \\ 9.5 \\ (n\text{=}1) \\ 9.6 \pm 0.47 \; ; \textbf{9.5} \\ (9.0\text{-}10.5, n\text{=}15) \\ (9.0\text{-}9.0, n\text{=}2) \\ \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,4 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2)	$\begin{array}{c} 1.7 \pm 0.17 \\ (1.3 - 2.0, n = 20) \\ 1.7 \pm 0.19 \\ (1.3 - 1.9, n = 9) \\ 1.4 \\ (n = 1) \\ 1.7 \\ (n = 1) \\ 2.0 \pm 0.34 \ ; \ \textbf{2.3} \\ (1.3 - 2.5, n = 15) \\ (1.6 - 1.7, n = 2) \\ \hline \\ 1.9 \pm 0.23 \end{array}$
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2 OTU 12 Classe 2 Femelle OTU 2 Classe 2+3 OTU 13 Classe 2 Classe 2 Classe 2 Classe 2 Classe 2 Classe 2+3	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0 8 (7,5-8,0, n=15) (7,0-7,5, n=2) 8,3 ± 0,44 8 (7,5-9,5, n=36)	$27,2 \pm 0,66 \\ (25,5-28,0, n=20) \\ 26,6 \pm 0,92 \\ (25,0-28,0, n=9) \\ 26,5 \\ (n=1) \\ 26,0 \\ (n=1) \\ 26,6 \pm 1,00 ; \textbf{27,0} \\ (25,0-28,0, n=14) \\ (25,0-26,0, n=2) \\ \\ 28,8 \pm 0,90 \\ (28,0-32,5, n=36) \\$	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\;;\textbf{11,5}\\ (11,5-13,0,n=15)\\ (11,0-12,0,n=2)\\ \\ \hline \\ 12,9\pm0,42\\ (12,0-14,0,n=36)\\ \end{array}$	$\begin{array}{c} 9,7\pm0,34\\ (9,0-10,5,n=20)\\ 9,4\pm0,49\\ (9,0-10,0,n=9)\\ 10,0\\ (n=1)\\ 9,5\\ (n=1)\\ 9,6\pm0,47\;;\textbf{9,5}\\ (9,0-10,5,n=15)\\ \end{array}$ $(9,0-9,0,n=2)$ $\begin{array}{c} 10,3\pm0,45\\ (9,5-11,5,n=36) \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,4 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36)	$\begin{array}{c} 1.7 \pm 0.17 \\ (1.3 - 2.0, n = 20) \\ 1.7 \pm 0.19 \\ (1.3 - 1.9, n = 9) \\ 1.4 \\ (n = 1) \\ 1.7 \\ (n = 1) \\ 2.0 \pm 0.34 \; ; \textbf{2.3} \\ (1.3 - 2.5, n = 15) \\ \hline \\ (1.6 - 1.7, n = 2) \\ \hline \\ 1.9 \pm 0.23 \\ (1.4 - 2.4, n = 36) \end{array}$
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2 Femelle OTU 2 Classe 2+3 OTU 5	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24; 8,0 8 (7,5-8,0, n=15) (7,0-7,5, n=2) 8,3 ± 0,44 8 (7,5-9,5, n=36) 8,2 ± 0,54	$27,2 \pm 0,66 \\ (25,5-28,0, n=20) \\ 26,6 \pm 0,92 \\ (25,0-28,0, n=9) \\ 26,5 \\ (n=1) \\ 26,0 \\ (n=1) \\ 26,6 \pm 1,00 ; \textbf{27,0} \\ (25,0-28,0, n=14) \\ (25,0-26,0, n=2) \\ \hline 28,8 \pm 0,90 \\ (28,0-32,5, n=36) \\ 27,7 \pm 1,34 \\ \hline$	$\begin{array}{c} 12.3 \pm 0.73 \\ (10.013.5, \text{n=}20) \\ 12.3 \pm 0.50 \\ (12.013.5, \text{n=}9) \\ 12.5 \\ (\text{n=}1) \\ 12.0 \\ (\text{n=}1) \\ 12.0 \pm 0.48 \; ; \; \textbf{11,5} \\ (11.513.0, \text{n=}15) \\ (11.012.0, \text{n=}2) \\ \end{array}$	$\begin{array}{c} 9.7 \pm 0.34 \\ (9.0\text{-}10.5, n\text{=}20) \\ 9.4 \pm 0.49 \\ (9.0\text{-}10.0, n\text{=}9) \\ 10.0 \\ (n\text{=}1) \\ 9.5 \\ (n\text{=}1) \\ 9.6 \pm 0.47 \; ; \textbf{9.5} \\ (9.0\text{-}10.5, n\text{=}15) \\ \end{array}$ $\begin{array}{c} (9.0\text{-}9.0, n\text{=}2) \\ \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2) 4,5 ± 0,65 (2,3-5,8, n=36) 4,7 ± 0,43	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36) 5,3 ± 0,52	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4 (n=1) 1,7 (n=1) 2,0 ± 0,34; 2,3 (1,3-2,5, n=15) (1,6-1,7, n=2)
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 10 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2 Femelle OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 5 Classe 2+3 OTU 5 Classe 2+3 OTU 5 Classe 2+3	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 6 (7,5-8,0, n=15) (7,0-7,5, n=2) 8,3 ± 0,44 8 (7,5-9,5, n=36) 8,2 ± 0,54 8 (7,5-9,0, n=14)	$27,2 \pm 0,66 \\ (25,5-28,0, n=20) \\ 26,6 \pm 0,92 \\ (25,0-28,0, n=9) \\ 26,5 \\ (n=1) \\ 26,0 \\ (n=1) \\ 26,6 \pm 1,00 ; \textbf{27,0} \\ (25,0-28,0, n=14) \\ (25,0-26,0, n=2) \\ \\ 28,8 \pm 0,90 \\ (28,0-32,5, n=36) \\ 27,7 \pm 1,34 \\ (24,5-30,0, n=14) \\ \end{cases}$	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\ ; \textbf{11,5}\\ (11,5-13,0,n=15)\\ (11,0-12,0,n=2)\\ \\ \hline \\ 12,9\pm0,42\\ (12,0-14,0,n=36)\\ 12,5\pm0,39\\ (12,0-13,0,n=14)\\ \end{array}$	$\begin{array}{c} 9.7 \pm 0.34 \\ (9.0\text{-}10.5, n\text{=}20) \\ 9.4 \pm 0.49 \\ (9.0\text{-}10.0, n\text{=}9) \\ 10.0 \\ (n\text{=}1) \\ 9.5 \\ (n\text{=}1) \\ 9.6 \pm 0.47 \; ; \textbf{9.5} \\ (9.0\text{-}10.5, n\text{=}15) \\ (9.0\text{-}9.0, n\text{=}2) \\ \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,7 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2) 4,5 ± 0,65 (2,3-5,8, n=36) 4,7 ± 0,43 (3,8-5,2, n=14)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42 ; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36) 5,3 ± 0,52 (4,6-6,1, n=14)	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4 (n=1) 1,7 (n=1) 2,0 ± 0,34; 2,3 (1,3-2,5, n=15) (1,6-1,7, n=2) 1,9 ± 0,23 (1,4-2,4, n=36) 1,9 ± 0,20 (1,5-2,3, n=14)
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2 Femelle OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 5 Classe 2+3 OTU 9	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24; 8,0 3 (7,5-8,0, n=15) (7,0-7,5, n=2) 8,3 ± 0,44 8 (7,5-9,5, n=36) 8,2 ± 0,54 8 (7,5-9,0, n=14) 8,0	$\begin{array}{c} 27,2\pm0,66\\ (25,5-28,0,n=20)\\ 26,6\pm0,92\\ (25,0-28,0,n=9)\\ 26,5\\ (n=1)\\ 26,0\\ (n=1)\\ 26,6\pm1,00\ ;\ \textbf{27,0}\\ (25,0-28,0,n=14)\\ (25,0-26,0,n=2)\\ \\ \hline 28,8\pm0,90\\ (28,0-32,5,n=36)\\ 27,7\pm1,34\\ (24,5-30,0,n=14)\\ 27,0\\ \end{array}$	$\begin{array}{c} 12,3\pm0,73\\ (10,0\text{-}13,5,\text{n=}20)\\ 12,3\pm0,50\\ (12,0\text{-}13,5,\text{n=}9)\\ 12,5\\ (\text{n=}1)\\ 12,0\\ (\text{n=}1)\\ 12,0\pm0,48\ ;\textbf{11,5}\\ (11,5\text{-}13,0,\text{n=}15)\\ (11,0\text{-}12,0,\text{n=}2)\\ \\ \hline 12,9\pm0,42\\ (12,0\text{-}14,0,\text{n=}36)\\ 12,5\pm0,39\\ (12,0\text{-}13,0,\text{n=}14)\\ 12,0\\ \end{array}$	$\begin{array}{c} 9.7 \pm 0.34 \\ (9.0\text{-}10.5, n\text{=}20) \\ 9.4 \pm 0.49 \\ (9.0\text{-}10.0, n\text{=}9) \\ 10.0 \\ (n\text{=}1) \\ 9.5 \\ (n\text{=}1) \\ 9.6 \pm 0.47 \; ; \textbf{9.5} \\ (9.0\text{-}10.5, n\text{=}15) \\ (9.0\text{-}9.0, n\text{=}2) \\ \\ \hline 10.3 \pm 0.45 \\ (9.5\text{-}11.5, n\text{=}36) \\ 10.0 \pm 0.54 \\ (9.0\text{-}11.0, n\text{=}14) \\ 10.0 \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,4 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2) 4,5 ± 0,65 (2,3-5,8, n=36) 4,7 ± 0,43 (3,8-5,2, n=14) 4,9	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36) 5,3 ± 0,52 (4,6-6,1, n=14) 5,5	$\begin{array}{c} 1.7 \pm 0.17 \\ (1.3 - 2.0, n = 20) \\ 1.7 \pm 0.19 \\ (1.3 - 1.9, n = 9) \\ 1.4 \\ (n = 1) \\ 1.7 \\ (n = 1) \\ 2.0 \pm 0.34 \; ; \; \textbf{2.3} \\ (1.3 - 2.5, n = 15) \\ (1.6 - 1.7, n = 2) \\ \\ \hline \begin{array}{c} 1.9 \pm 0.23 \\ (1.4 - 2.4, n = 36) \\ 1.9 \pm 0.20 \\ (1.5 - 2.3, n = 14) \\ 2.2 \end{array}$
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2 Femelle OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 5 Classe 2+3 OTU 5 Classe 2	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0 8 (7,5-8,0, n=15) (7,0-7,5, n=2) 8,3 ± 0,44 8 (7,5-9,5, n=36) 8,2 ± 0,54 3 (7,5-9,0, n=14) 8,0 (n=1)	$\begin{array}{c} 27,2\pm0,66\\ (25,5-28,0,n=20)\\ 26,6\pm0,92\\ (25,0-28,0,n=9)\\ 26,5\\ (n=1)\\ 26,0\\ (n=1)\\ 26,6\pm1,00\ ;\ \textbf{27,0}\\ (25,0-28,0,n=14)\\ (25,0-26,0,n=2)\\ \\ \hline 28,8\pm0,90\\ (28,0-32,5,n=36)\\ 27,7\pm1,34\\ (24,5-30,0,n=14)\\ 27,0\\ (n=1)\\ \end{array}$	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\;;\textbf{11,5}\\ (11,5-13,0,n=15)\\ (11,0-12,0,n=2)\\ \\ \hline \\ 12,9\pm0,42\\ (12,0-14,0,n=36)\\ 12,5\pm0,39\\ (12,0-13,0,n=14)\\ 12,0\\ (n=1)\\ \end{array}$	$\begin{array}{c} 9,7\pm0,34\\ (9,0-10,5,n=20)\\ 9,4\pm0,49\\ (9,0-10,0,n=9)\\ 10,0\\ (n=1)\\ 9,5\\ (n=1)\\ 9,6\pm0,47\;;\textbf{9,5}\\ (9,0-10,5,n=15)\\ \end{array}$ $\begin{array}{c} (9,0-10,5,n=15)\\ (9,0-9,0,n=2)\\ \end{array}$ $\begin{array}{c} 10,3\pm0,45\\ (9,5-11,5,n=36)\\ 10,0\pm0,54\\ (9,0-11,0,n=14)\\ 10,0\\ (n=1)\\ \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2) 4,5 ± 0,65 (2,3-5,8, n=36) 4,7 ± 0,43 (3,8-5,2, n=14) 4,9 (n=1)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36) 5,3 ± 0,52 (4,6-6,1, n=14) 5,5 (n=1)	$\begin{array}{c} 1.7 \pm 0.17 \\ (1.3 - 2.0, n = 20) \\ 1.7 \pm 0.19 \\ (1.3 - 1.9, n = 9) \\ 1.4 \\ (n = 1) \\ 1.7 \\ (n = 1) \\ 2.0 \pm 0.34 ; \textbf{2.3} \\ (1.3 - 2.5, n = 15) \\ \hline \\ (1.6 - 1.7, n = 2) \\ \hline \\ 1.9 \pm 0.23 \\ (1.4 - 2.4, n = 36) \\ 1.9 \pm 0.20 \\ (1.5 - 2.3, n = 14) \\ 2.2 \\ (n = 1) \\ \end{array}$
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2 Femelle OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 5 Classe 2+3 OTU 9 Classe 2 OTU 10	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24; 8,0 8 (7,5-8,0, n=15) (7,0-7,5, n=2) 8,3 ± 0,44 8 (7,5-9,5, n=36) 8,2 ± 0,54 8 (7,5-9,0, n=14) 8,0 (n=1) 8,0	$\begin{array}{c} 27,2\pm0,66\\ (25,5-28,0,n=20)\\ 26,6\pm0,92\\ (25,0-28,0,n=9)\\ 26,5\\ (n=1)\\ 26,0\\ (n=1)\\ 26,6\pm1,00\ ;\ \textbf{27,0}\\ (25,0-28,0,n=14)\\ (25,0-26,0,n=2)\\ \\ \hline 28,8\pm0,90\\ (28,0-32,5,n=36)\\ 27,7\pm1,34\\ (24,5-30,0,n=14)\\ 27,0\\ (n=1)\\ 28,0\\ \end{array}$	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,\pm0,48\ ;\ \textbf{11,5}\\ (11,5-13,0,n=15)\\ (11,0-12,0,n=2)\\ \\ \hline \\ 12,9\pm0,42\\ (12,0-14,0,n=36)\\ 12,5\pm0,39\\ (12,0-13,0,n=14)\\ 12,0\\ (n=1)\\ 12,5\\ \end{array}$	$\begin{array}{c} 9.7 \pm 0.34 \\ (9.0\text{-}10.5, n\text{=}20) \\ 9.4 \pm 0.49 \\ (9.0\text{-}10.0, n\text{=}9) \\ 10.0 \\ (n\text{=}1) \\ 9.5 \\ (n\text{=}1) \\ 9.6 \pm 0.47 \; ; \textbf{9.5} \\ (9.0\text{-}10.5, n\text{=}15) \\ \end{array}$ $\begin{array}{c} (9.0\text{-}9.0, n\text{=}2) \\ \hline \\ 10.3 \pm 0.45 \\ (9.5\text{-}11.5, n\text{=}36) \\ 10.0 \pm 0.54 \\ (9.0\text{-}11.0, n\text{=}14) \\ 10.0 \\ (n\text{=}1) \\ 10.0 \\ \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2) 4,5 ± 0,65 (2,3-5,8, n=36) 4,7 ± 0,43 (3,8-5,2, n=14) 4,9 (n=1) 5,0	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36) 5,3 ± 0,52 (4,6-6,1, n=14) 5,5	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4 (n=1) 1,7 (n=1) 2,0 ± 0,34; 2,3 (1,3-2,5, n=15) (1,6-1,7, n=2) 1,9 ± 0,23 (1,4-2,4, n=36) 1,9 ± 0,20 (1,5-2,3, n=14) 2,2 (n=1) 2,0
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2 Femelle OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 9 Classe 2 OTU 9 Classe 2 OTU 9 Classe 2 OTU 10 Classe 2	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 6 (7,5-8,0, n=15) (7,0-7,5, n=2) 8 (7,5-9,5, n=36) 8 (7,5-9,0, n=14) 8 (7,5-9,0, n=14) 8 (7,5-9,0, n=14) 8 (7,5-9,0, n=14) 8 (0,0) 8 (0,0)	$\begin{array}{c} 27,2\pm0,66\\ (25,5-28,0,n=20)\\ 26,6\pm0,92\\ (25,0-28,0,n=9)\\ 26,5\\ (n=1)\\ 26,0\\ (n=1)\\ 26,6\pm1,00\ ;\ \textbf{27,0}\\ (25,0-28,0,n=14)\\ (25,0-26,0,n=2)\\ \\ \hline \\ 28,8\pm0,90\\ (28,0-32,5,n=36)\\ 27,7\pm1,34\\ (24,5-30,0,n=14)\\ 27,0\\ (n=1)\\ 28,0\\ (n=1) \end{array}$	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\ ; \textbf{11,5}\\ (11,5-13,0,n=15)\\ (11,0-12,0,n=2)\\ \\ \hline \\ 12,9\pm0,42\\ (12,0-14,0,n=36)\\ 12,5\pm0,39\\ (12,0-13,0,n=14)\\ 12,0\\ (n=1)\\ 12,5\\ (n=1)\\ \end{array}$	$\begin{array}{c} 9.7 \pm 0.34 \\ (9.0\text{-}10.5, n\text{=}20) \\ 9.4 \pm 0.49 \\ (9.0\text{-}10.0, n\text{=}9) \\ 10.0 \\ (n\text{=}1) \\ 9.5 \\ (n\text{=}1) \\ 9.6 \pm 0.47 \; ; \textbf{9.5} \\ (9.0\text{-}10.5, n\text{=}15) \\ (9.0\text{-}9.0, n\text{=}2) \\ \\ \hline \\ 10.3 \pm 0.45 \\ (9.5\text{-}11.5, n\text{=}36) \\ 10.0 \pm 0.54 \\ (9.0\text{-}11.0, n\text{=}14) \\ 10.0 \\ (n\text{=}1) \\ 10.0 \\ (n\text{=}1) \\ \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2) 4,5 ± 0,65 (2,3-5,8, n=36) 4,7 ± 0,43 (3,8-5,2, n=14) 4,9 (n=1) 5,0 (n=1)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42 ; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36) 5,3 ± 0,52 (4,6-6,1, n=14) 5,5 (n=1) 5,8 (n=1)	$\begin{array}{c} 1.7 \pm 0.17 \\ (1.3 - 2.0, n = 20) \\ 1.7 \pm 0.19 \\ (1.3 - 1.9, n = 9) \\ 1.4 \\ (n = 1) \\ 1.7 \\ (n = 1) \\ 2.0 \pm 0.34 \; ; \; \textbf{2.3} \\ (1.3 - 2.5, n = 15) \\ (1.6 - 1.7, n = 2) \\ \hline \\ 1.9 \pm 0.23 \\ (1.4 - 2.4, n = 36) \\ 1.9 \pm 0.20 \\ (1.5 - 2.3, n = 14) \\ 2.2 \\ (n = 1) \\ 2.0 \\ (n = 1) \end{array}$
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2 Femelle OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 5 Classe 2 OTU 9 Classe 2 OTU 10 Classe 2 OTU 10 Classe 2 OTU 10	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0 8 (7,5-8,0, n=15) (7,0-7,5, n=2) 8,3 ± 0,44 8 (7,5-9,5, n=36) 8,2 ± 0,54 8 (7,5-9,0, n=14) 8,0 (n=1) 8,0 (n=1) 7,9 ± 0,32	$\begin{array}{c} 27,2\pm0,66\\ (25,5-28,0,n=20)\\ 26,6\pm0,92\\ (25,0-28,0,n=9)\\ 26,5\\ (n=1)\\ 26,0\\ (n=1)\\ 26,6\pm1,00\ ;\ \textbf{27,0}\\ (25,0-28,0,n=14)\\ (25,0-26,0,n=2)\\ \\ \hline 28,8\pm0,90\\ (28,0-32,5,n=36)\\ 27,7\pm1,34\\ (24,5-30,0,n=14)\\ 27,0\\ (n=1)\\ 28,0\\ (n=1)\\ 27,9\pm0,73\\ \end{array}$	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\;;\textbf{11,5}\\ (11,5-13,0,n=15)\\ (11,0-12,0,n=2)\\ \\ \hline \\ 12,9\pm0,42\\ (12,0-14,0,n=36)\\ 12,5\pm0,39\\ (12,0-13,0,n=14)\\ 12,0\\ (n=1)\\ 12,5\\ (n=1)\\ 12,6\pm0,44\\ \end{array}$	$\begin{array}{c} 9,7\pm0,34\\ (9,0-10,5,n=20)\\ 9,4\pm0,49\\ (9,0-10,0,n=9)\\ 10,0\\ (n=1)\\ 9,5\\ (n=1)\\ 9,6\pm0,47\;;\textbf{9,5}\\ (9,0-10,5,n=15)\\ (9,0-9,0,n=2)\\ \\ \hline \\ 10,3\pm0,45\\ (9,5-11,5,n=36)\\ 10,0\pm0,54\\ (9,0-11,0,n=14)\\ 10,0\\ (n=1)\\ 10,0\\ (n=1)\\ 10,1\pm0,18\\ \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2) 4,5 ± 0,65 (2,3-5,8, n=36) 4,7 ± 0,43 (3,8-5,2, n=14) 4,9 (n=1) 5,0 (n=1) 4,9 ± 0,55	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36) 5,3 ± 0,52 (4,6-6,1, n=14) 5,5 (n=1) 5,8 (n=1) 5,5 ± 0,57	1,7 ± 0,17 (1,3-2,0, n=20) 1,7 ± 0,19 (1,3-1,9, n=9) 1,4 (n=1) 1,7 (n=1) 2,0 ± 0,34 ; 2,3 (1,3-2,5, n=15) (1,6-1,7, n=2) 1,9 ± 0,23 (1,4-2,4, n=36) 1,9 ± 0,20 (1,5-2,3, n=14) 2,2 (n=1) 2,0 (n=1) 2,1 ± 0,36
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2 Femelle OTU 2 Classe 2+5 OTU 5 Classe 2 Classe 2 Classe 2 OTU 5 Classe 2 OTU 5 Classe 2 OTU 10 Classe 2 OTU 10 Classe 2 OTU 10 Classe 2 OTU 10 Classe 2 OTU 112 Classe 2+3	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0 3 (7,5-8,0, n=15) (7,0-7,5, n=2) 8,3 ± 0,44 6 (7,5-9,5, n=36) 8,2 ± 0,54 3 (7,5-9,0, n=14) 8,0 (n=1) 8,0 (n=1) 7,9 ± 0,32 8 (7,5-8,5, n=8)	$\begin{array}{c} 27,2\pm0,66\\ (25,5-28,0,n=20)\\ 26,6\pm0,92\\ (25,0-28,0,n=9)\\ 26,5\\ (n=1)\\ 26,0\\ (n=1)\\ 26,6\pm1,00\ ;\ \textbf{27,0}\\ (25,0-28,0,n=14)\\ (25,0-26,0,n=2)\\ \\ \hline 28,8\pm0,90\\ (28,0-32,5,n=36)\\ 27,7\pm1,34\\ (24,5-30,0,n=14)\\ 27,0\\ (n=1)\\ 28,0\\ (n=1)\\ 27,9\pm0,73\\ (27,0-29,0,n=8)\\ \end{array}$	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\ ;\ \textbf{11,5}\\ (11,5-13,0,n=15)\\ (11,0-12,0,n=2)\\ \\ \hline \\ 12,9\pm0,42\\ (12,0-14,0,n=36)\\ 12,5\pm0,39\\ (12,0-13,0,n=14)\\ 12,0\\ (n=1)\\ 12,5\\ (n=1)\\ 12,6\\ (n$	$\begin{array}{c} 9,7\pm0,34\\ (9,0-10,5,n=20)\\ 9,4\pm0,49\\ (9,0-10,0,n=9)\\ 10,0\\ (n=1)\\ 9,5\\ (9,0-10,5,n=15)\\ \end{array}$ $\begin{array}{c} 9,6\pm0,47\;;\textbf{9,5}\\ (9,0-10,5,n=15)\\ \end{array}$ $\begin{array}{c} (9,0-9,0,n=2)\\ \end{array}$ $\begin{array}{c} 10,3\pm0,45\\ (9,5-11,5,n=36)\\ 10,0\pm0,54\\ (9,0-11,0,n=14)\\ 10,0\\ (n=1)\\ 10,0\\ (n=1)\\ 10,1\pm0,18\\ (10,0-10,5,n=8)\\ \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2) 4,5 ± 0,65 (2,3-5,8, n=36) 4,7 ± 0,43 (3,8-5,2, n=14) 4,9 (n=1) 5,0 (n=1) 4,9 ± 0,55 (4,1-5,5, n=8)	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36) 5,3 ± 0,52 (4,6-6,1, n=14) 5,5 (n=1) 5,8 (n=1) 5,5 ± 0,57 (4,6-6,3, n=8)	$\begin{array}{c} 1.7 \pm 0.17 \\ (1.3 - 2.0, n = 20) \\ 1.7 \pm 0.19 \\ (1.3 - 1.9, n = 9) \\ 1.4 \\ (n = 1) \\ 1.7 \\ (n = 1) \\ 2.0 \pm 0.34 ; \textbf{2.3} \\ (1.3 - 2.5, n = 15) \\ (1.6 - 1.7, n = 2) \\ \\ \hline \\ 1.9 \pm 0.23 \\ (1.4 - 2.4, n = 36) \\ 1.9 \pm 0.20 \\ (1.5 - 2.3, n = 14) \\ 2.2 \\ (n = 1) \\ 2.0 \\ (n = 1) \\ 2.1 \pm 0.36 \\ (1.5 - 2.4, n = 8) \\ \end{array}$
OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 6 Classe 3 OTU 10 Classe 2 OTU 12 Classe 2+3 OTU 13 Classe 2 Femelle OTU 2 Classe 2+3 OTU 5 Classe 2+3 OTU 9 Classe 2 OTU 10 Classe 2 OTU 11 Classe 2 OTU 12 Classe 2 OTU 10 Classe 2 OTU 12 Classe 2 OTU 12 Classe 2 OTU 12 Classe 2+3 OTU 12 Classe 2 OTU 12 Classe 2 OTU 12	7,9 ± 0,18 8 (7,5-8,0, n=20) 7,9 ± 0,30 8 (7,5-8,5, n=9) 7,5 (n=1) 8,0 (n=1) 7,8 ± 0,24 ; 8,0 8 (7,5-8,0, n=15) (7,0-7,5, n=2) 8,3 ± 0,44 8 (7,5-9,5, n=36) 8,2 ± 0,54 8 (7,5-9,0, n=14) 8,0 (n=1) 8,0 (n=1) 7,9 ± 0,32	$\begin{array}{c} 27,2\pm0,66\\ (25,5-28,0,n=20)\\ 26,6\pm0,92\\ (25,0-28,0,n=9)\\ 26,5\\ (n=1)\\ 26,0\\ (n=1)\\ 26,6\pm1,00\ ;\ \textbf{27,0}\\ (25,0-28,0,n=14)\\ (25,0-26,0,n=2)\\ \\ \hline 28,8\pm0,90\\ (28,0-32,5,n=36)\\ 27,7\pm1,34\\ (24,5-30,0,n=14)\\ 27,0\\ (n=1)\\ 28,0\\ (n=1)\\ 27,9\pm0,73\\ \end{array}$	$\begin{array}{c} 12,3\pm0,73\\ (10,0-13,5,n=20)\\ 12,3\pm0,50\\ (12,0-13,5,n=9)\\ 12,5\\ (n=1)\\ 12,0\\ (n=1)\\ 12,0\pm0,48\;;\textbf{11,5}\\ (11,5-13,0,n=15)\\ (11,0-12,0,n=2)\\ \\ \hline \\ 12,9\pm0,42\\ (12,0-14,0,n=36)\\ 12,5\pm0,39\\ (12,0-13,0,n=14)\\ 12,0\\ (n=1)\\ 12,5\\ (n=1)\\ 12,6\pm0,44\\ \end{array}$	$\begin{array}{c} 9,7\pm0,34\\ (9,0-10,5,n=20)\\ 9,4\pm0,49\\ (9,0-10,0,n=9)\\ 10,0\\ (n=1)\\ 9,5\\ (n=1)\\ 9,6\pm0,47\;;\textbf{9,5}\\ (9,0-10,5,n=15)\\ (9,0-9,0,n=2)\\ \\ \hline \\ 10,3\pm0,45\\ (9,5-11,5,n=36)\\ 10,0\pm0,54\\ (9,0-11,0,n=14)\\ 10,0\\ (n=1)\\ 10,0\\ (n=1)\\ 10,1\pm0,18\\ \end{array}$	4,2 ± 0,42 (3,3-4,8, n=20) 4,2 ± 0,21 (3,9-4,7, n=9) 4,0 (n=1) 4,7 ± 0,49; 5,0 (3,5-5,4, n=15) (4,4-4,8, n=2) 4,5 ± 0,65 (2,3-5,8, n=36) 4,7 ± 0,43 (3,8-5,2, n=14) 4,9 (n=1) 5,0 (n=1) 4,9 ± 0,55	4,9 ± 0,41 (4,0-5,4, n=20) 4,8 ± 0,27 (4,3-5,2, n=9) 4,6 (n=1) 4,9 (n=1) 5,3 ± 0,42; 5,4 (4,4-5,9, n=15) (5,1-5,5, n=2) 5,3 ± 0,74 (1,9-7,0, n=36) 5,3 ± 0,52 (4,6-6,1, n=14) 5,5 (n=1) 5,8 (n=1) 5,5 ± 0,57	$\begin{array}{c} 1.7 \pm 0.17 \\ (1.3 - 2.0, n = 20) \\ 1.7 \pm 0.19 \\ (1.3 - 1.9, n = 9) \\ 1.4 \\ (n = 1) \\ 1.7 \\ (n = 1) \\ 2.0 \pm 0.34 ; \textbf{2.3} \\ (1.3 - 2.5, n = 15) \\ \hline \\ (1.6 - 1.7, n = 2) \\ \hline \\ 1.9 \pm 0.23 \\ (1.4 - 2.4, n = 36) \\ 1.9 \pm 0.20 \\ (1.5 - 2.3, n = 14) \\ 2.2 \\ (n = 1) \\ 2.0 \\ (n = 1) \\ 2.1 \pm 0.36 \\ \end{array}$

ANNEXE 3

Mesures du groupe *Triaenops rufus*. Les mesures sont présentées comme suit: moyenne ± déviation standard, mesures minimum-maximum et nombre de spécimens. Lorsque ce dernier est inférieur ou égal à deux les statistiques descriptives ne sont pas présentées. Les analyses de variance sont effectuées entre les individus de chaque OTU. 1, Diégo-Suarez; 2, Ankarana; 3, Analamerana; 4, Mitsinjo; 5, Namoroka; 6, Bemaraha; 7, Kirindy-CFPF; 9, Kirindy-Mite; 11, Isalo; 12, Sarodrano; 14, Tsimanampetsotsa; 15, holotype + paratype *T. rufus*; 16, *T. humbloti*. Voir Tableaux 5 et 7 pour les variables significatives. Voir Tableau 1 pour les explications des acronymes.

1. Mesures externes

Mâle	LT	LQ	PIED	OREIL	AB	POIDS
OTU 2	93,6 ± 2,30	31,8 ± 2,05	7,6 ± 0,55	15,0 ± 0,71	52,2 ± 0,84	9,5 ± 0,98
	(90,0-96,0, n=5)	(30,0-35,0, n=5)	(7,0-8,0, n=5)	(14,0-16,0, n=5)	(51,0-53,0, n=5)	(8,3-10,5, n=5)
OTU 3	93,0 ± 3,46 (89,0-95,0, n=3)	33,3 ± 5,03 (28,0-38,0, n=3)	7.3 ± 0.58 (7.0-8.0, n=3)	15,3 ± 0,58 (15,0-16,0, n=3)	52,0 ± 1,00 (51,0-53,0, n=3)	10,7 ± 0,76 (10,0-11,5, n=3)
OTU 5	92.0	(20,0-30,0, 11-0)	(1,0-0,0,11-0)	(13,0-10,0,11-0)	(51,0-33,0,11-3)	(10,0-11,0,11-0)
OTU 9	(n=1)	(27,0-35,0, n=2)	(8,0-8,0, n=2)	(15,0-17,0, n=2)	(52,0-54,0, n=2)	(10,5-10,5, n=2)
	(95,0-96,0, n=2)	(32,0-33,0, n=2)	(8,0-9,0, n=2)	(14,0-16,0, n=2)	(51,0-52,0, n=2)	(9,6-11,0, n=2)
OTU 11	99,3 ± 3,24	32,6 ± 2,07	7.5 ± 0.76	15,5 ± 0,53	53,1 ± 1,73	13,6 ± 1,55
	(96,0-104,0, n=8)	(31,0-36,0, n=8)	(6,0-8,0, n=8)	(15,0-16,0, n=8)	(50,0-56,0, n=8)	(11,5-15,5, n=8)
OTU 12+14	95,4 ± 3,07	33,3 ± 3,01	7.9 ± 0.64	15,6 ± 0,52	51,6 ± 1,77	9,9 ± 1,12
	(92,0-102,0, n=8)	(27,0-37,0, n=8)	(7.0-9.0, n=8)	(15,0-16,0, n=8)	(50,0-55,0, n=8)	(8,2-11,5, n=8)
Femelle						
OTU 2	88,7 ± 1,94	30,4 ± 1,42	7,9 ± 0,60	13,6 ± 0,73	49,8 ± 2,33	7,4 ± 0,46
	(86,0-92,0, n=9)	(28,0-33,0, n=9)	(7,0-9,0, n=9)	(13,0-15,0, n=9)	(46,0-53,0, n=9)	(6,6-7,9, n=9)
OTU 3	90,0	33,0	8,0	14,0	51,0	10,0
	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 5	87,0	31,0	7,0	12,0	51,0	7,6
	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 6	89,8 ± 4,74 (79,0-97,0, n=23)	30,9 ± 2,18 (26,0-35,0, n=23)	7,0 ± 0,82 (6.0-9.0 n=23)	$14,2 \pm 0,72$	50,2 ± 1,17 (48,0-52,0, n=23)	9,1 ± 1,01
OTU 7+9	93,8 ± 2,93	31,7 ± 1,45 (29,0-35,0, n=16)	7.7 ± 0.48	14,1 ± 1,00		$9,4 \pm 0,82$
OTU 12+14	91,4 ± 2,23 (87,0-96,0, n=17)	$33,6 \pm 2,32$	$7,7 \pm 0,59$	$14,6 \pm 0,70$	50,5 ± 1,70 (47,0-53,0, n=17)	9,0 ± 1,28

2. Mesures crâniennes

Mâle	LCR	LCB	ZYGO	HBC	INTER	MAST	ROST
OTU 2	17,6 ± 0,26	15,8 ± 0,50	$8,7 \pm 0,12$	$7,1 \pm 0,15$	$2,6 \pm 0,13$	$8,5 \pm 0,16$	$7,0 \pm 0,14$
	(17,3-17,8, n=6)	(15,3-16,6, n=6)	(8,5-8,8, n=6)	(6,9-7,2, n=6)	(2,4-2,8, n=6)	(8,3-8,7, n=6)	(6,8-7,2, n=6)
OTU 3	$18,5 \pm 0,31$	$15,5 \pm 0,26$	$8,5 \pm 0,30$	$7,3 \pm 0,26$	$2,7 \pm 0,25$	$8,4 \pm 0,17$	$6,9 \pm 0,17$
	(18,2-18,8, n=3)	(15,2-15,7, n=3)	(8,2-8,8, n=3)	(7,0-7,5, n=3)	(2,4-2,9, n=3)	(8,2-8,5, n=3)	(6,8-7,1, n=3)
OTU 5	(17,3-17,8, n=2)	(15,6-15,7, n=2)	(8,6-9,1, n=2)	(7,0-7,1, n=2)	(2,5-2,6, n=2)	(8,4-8,5, n=2)	(7,2-7,2, n=2)
OTU 9	(17,1-17,3, n=2)	(15,3-15,3, n=2)	(8,5-8,6, n=2)	(6,9-7,2, n=2)	(2,4-2,6, n=2)	(8,3-8,3, n=2)	(6,6-6,8, n=2)
OTU 11	$17,9 \pm 0,21$	$15,8 \pm 0,21$	$8,9 \pm 0,17$	$7,2 \pm 0,24$	$2,7 \pm 0,19$	$8,6 \pm 0,21$	$7,1 \pm 0,18$
	(17,6-18,1, n=8)	(15,5-16,1, n=8)	(8,6-9,1, n=8)	(6,9-7,5, n=8)	(2,5-3,1, n=8)	(8,4-8,9, n=8)	(6,8-7,4, n=8)
OTU 12+14	17,6 ± 0,32	$15,5 \pm 0,19$	$8,6 \pm 0,10$	$7,1\pm0,20$	$2,6 \pm 0,14$	$8,5 \pm 0,18$	$6,9 \pm 0,34$
	(17,2-18,2, n=8)	(15,2-15,8, n=8)	(8,5-8,8, n=8)	(6,8-7,4, n=8)	(2,5-2,9, n=8)	(8,2-8,8, n=8)	(6,3-7,2, n=8)
Femelle							
OTU 2	16,2 ± 0,20	14,3 ± 0,27	8,1 ± 0,18	6,6 ± 0,18	2,6 ± 0,07	8,1 ± 0,13	6,3 ± 0,20
	(16,0-16,5, n=9)	(13,8-14,6, n=9)	(7,8-8,4, n=9)	(6,3-6,9, n=9)	(2,5-2,7, n=9)	(7,9-8,3, n=9)	(6,0-6,6, n=9)
OTU 3	17,8	14,7	8,2	7,1	2,7	8,2	6,3
	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 4	(16,7-16,7, n=2)	(14,4-14,4, n=2)	(8,1-8,2, n=2)	(6,3-6,6, n=2)	(2,5-2,8, n=2)	(7,9-8,2, n=2)	(6,3-6,4, n=2)
OTU 5	16,2	14,5	8,1	6,5	2,5	8,0	6,4
	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 6	$16,3 \pm 0,26$	$14,3 \pm 0,28$	$8,1 \pm 0,19$	$6,5 \pm 0,20$	$2,5 \pm 0,11$	$8,0 \pm 0,16$	$6,2 \pm 0,23$
	(15,9-16,7, n=23)	(13,8-14,8, n=23)	(7,8-8,5, n=23)	(6,1-7,0, n=23)	(2,3-2,8, n=23)	(7,7-8,4, n=23	(5,9-6,6, n=23)
OTU 7+ 9	$16,4 \pm 0,23$	$14,4 \pm 0,22$	$8,2 \pm 0,21$	$6,7 \pm 0,23$	$2,6 \pm 0,13$	$8,0 \pm 0,17$	$6,2 \pm 0,26$
	(16,0-16,8, n=16)	(14,1-14,9, n=16)	(7,8-8,6, n=16)	(6,2-7,1, n=16)	(2,4-2,8, n=16)	(7,8-8,4, n=16	(5,6-6,6, n=16)
OTU 12+14	$16,4 \pm 0,24$	$14,4 \pm 0,24$	$8,1 \pm 0,18$	$6,7 \pm 0,21$	$2,6 \pm 0,11$	$8,1 \pm 0,14$	$6,1 \pm 0,31$
	(16,0-16,9, n=17)	(14,1-14,9, n=17)	(7,8-8,4, n=17)	(6,3-7,1, n=17)	(2,5-2,9, n=18)	(7,8-8,4, n=18	(5,5-6,6, n=18)

3. Mesures dentaires

Mâle	I1-M3	MOLS	C1-C1	M3-M3	lg M	HCS	i ₁ -m ₃
OTU 2	$6,5 \pm 0,15$	$4,9 \pm 0,14$	$4,9 \pm 0,14$	$6,4 \pm 0,23$	1,5 ± 0,06	$2,7 \pm 0,22$	7,6 ± 0,22
		(4,7-5,1, n=6)	(4,7-5,1, n=6)	(6,2-6,7, n=6)	(1,4-1,6, n=6)		(7,3-7,9, n=6)
OTU 3	6.4 ± 0.20	4.8 ± 0.10	4.8 ± 0.15	6.3 ± 0.12	1.4 ± 0.10	2.7 ± 0.15	7.5 ± 0.25
		(4,7-4,9, n=3)	(4,7-5,0, n=3)	(6,2-6,4, n=3)	(1,3-1,5, n=3)	, ,	(7,3-7,8, n=3)
OTU 5		(4,7-4,9, n=2)	(4,6-5,0, n=2)	(6,3-6,6, n=2)	(1,4-1,4, n=2)		(7,6-7,6, n=2)
OTU 9	(6,3-6,4, n=2)	(4,7-4,7, n=2)	(4,9-4,9, n=2)	(6,3-6,4, n=2)	(1,4-1,5, n=2)		(7,5-7,7, n=2)
OTU 11	6.4 ± 0.09	4.8 ± 0.10	5.0 ± 0.17	6.5 ± 0.29	$1,4 \pm 0,05$	$2,6 \pm 0,16$	$7,6 \pm 0,20$
01011		(4,7-5,0, n=8)	(4,8-5,2, n=7)	(6,0-6,9, n=8)		(2,3-2,8, n=8)	
OTU 12+14		4.8 ± 0.05	4.8 ± 0.17	6.3 ± 0.08	$1,4 \pm 0,05$	$2,6 \pm 0,24$	7.7 ± 0.14
010 12+1-		(4,7-4,8, n=8)	(4,6-5,1, n=8)	(6,2-6,4, n=8)	(1,3-1,4, n=8)		(7,5-7,9, n=8)
	(0,0-0,0,11-0)	(+,1-+,0,11-0)	(4,0-0,1,11-0)	(0,2-0,4,11-0)	(1,0-1,4,11-0)	(2,0-0,0,11-0)	(1,0-1,0,11-0)
Femelle							
OTU 2	6.0 ± 0.15	4.5 ± 0.13	$4,4 \pm 0,11$	6.0 ± 0.09	1.3 ± 0.07	$2,1 \pm 0,17$	7.0 ± 0.13
		(4,3-4,8, n=9)	(4,2-4,5, n=9)	(5,9-6,2, n=9)	(1,3-1,5, n=9)		(6,8-7,2, n=9)
OTU 3	6,1	4,6	4,3	6,1	1,3	2,3	6,9
	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 4	(5,8-5,9, n=2)	(4,4-4,6, n=2)	(4,4-4,5, n=2)	(6,0-6,2, n=2)	(1,3-1,3, n=2)	,	(7,1-7,2, n=2)
OTU 5	6,0	4,7	4,5	6,1	1,4	2,1	7,2
	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 6	$5,9 \pm 0,15$	$4,4 \pm 0,21$	$4,4 \pm 0,12$	$6,0 \pm 0,16$	$1,3 \pm 0,08$	$2,0 \pm 0,24$	$7,0 \pm 0,20$
			(4,3-4,7, n=23)	(5,8-6,4, n=23)) (6,4-7,4, n=23)
OTU 7+9	$5,9 \pm 0,11$	$4,5 \pm 0,12$	$4,4 \pm 0,14$	$6,1 \pm 0,14$	$1,4 \pm 0,05$	$2,0 \pm 0,13$	$6,9 \pm 0,15$
) (4,3-4,7, n=16)) (4,1-4,7, n=16)	(5,8-6,4, n=16)	(1,3-1,4, n=16	6) (1,8-2,2, n=16)) (6,7-7,3, n=16)
OTU 12+14	46,0 ± 0,11	$4,6 \pm 0,12$	$4,4 \pm 0,14$	$6,1 \pm 0,21$	$1,3 \pm 0,05$	$2,1 \pm 0,15$	$7,1 \pm 0,21$
	(5,8-6,2, n=18)) (4,4-4,9, n=18)	(4,2-4,7, n=18)	(5,7-6,4, n=18)	(1,3-1,4, n=18	3) (1,8-2,4, n=18)) (6,8-7,5, n=18)
Mâle	moli	molcon	lg m	hci	h	m ₂	
OTU 2							
0102	$6,0 \pm 0,12$	5,3 ± 0,1	0,9 ±	0,04 2,4 ±	0,09 1,	6 ± 0,09	
0102	6,0 ± 0,12 (5,8-6,1, n=		,			6 ± 0,09 ,5-1,7, n=6)	
OTU 3	, ,		n=6) (0,8-0	,9, n=6) (2,3-	2,5, n=6) (1		
	(5,8-6,1, n=	6) $(5,1-5,4,5,4\pm0,1)$	n=6) (0,8-0 5 0,9 ±	,9, n=6) (2,3- 0,06 2,4 ±	2,5, n=6) (1 : 0,12 1,	,5-1,7, n=6)	
	(5,8-6,1, n=5,8 ± 0,06	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6,	n=6) (0,8-0 5 0,9 ± n=3) (0,8-0	,9, n=6) (2,3-1 0,06 2,4 ± ,9, n=3) (2,3-1	2,5, n=6) (1 : 0,12 1, 2,5, n=3) (1	,5-1,7, n=6) 7 ± 0,12	
OTU 3	(5,8-6,1, n= 5,8 ± 0,06 (5,8-5,9, n= (5,9-6,0, n=	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6,	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0	,9, n=6) (2,3- 0,06 2,4 ± ,9, n=3) (2,3- ,9, n=2) (2,3-	2,5, n=6) (1 : 0,12 1, 2,5, n=3) (1 2,5, n=2) (1	,5-1,7, n=6) ,7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2)	
OTU 3 OTU 5	(5,8-6,1, n= 5,8 ± 0,06 (5,8-5,9, n= (5,9-6,0, n= (5,7-6,0, n=	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6,	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0	(2,3-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	2,5, n=6) (1 : 0,12 1, 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1	,5-1,7, n=6) ,7 ± 0,12 ,6-1,8, n=3)	
OTU 3 OTU 5 OTU 9	(5,8-6,1, n= 5,8 ± 0,06 (5,8-5,9, n= (5,9-6,0, n= (5,7-6,0, n= 6,0 ± 0,13	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6, 2) (5,2-5,2, 5,4 ± 0,1	n=6) (0,8-0 5 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ±	,9, n=6) (2,3-: 0,06 2,4 ± ,9, n=3) (2,3-: ,9, n=2) (2,3-: ,9, n=2) (2,4-: 0,05 2,4 ±	2,5, n=6) (1 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 1,0,14	,5-1,7, n=6) 7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2) ,4-1,6, n=2) 7 ± 0,12	
OTU 3 OTU 5 OTU 9	(5,8-6,1, n= $5,8\pm0,06$ (5,8-5,9, n= (5,9-6,0, n= (5,7-6,0, n= $6,0\pm0,13$ (5,8-6,2, n=	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6, 2) (5,2-5,2, 5,4 ± 0,1	n=6) (0,8-0 5 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0	,9, n=6) (2,3-: 0,06 2,4 ± ,9, n=3) (2,3-: ,9, n=2) (2,3-: ,9, n=2) (2,4-: 0,05 2,4 ± ,9, n=8) (2,2-:	2,5, n=6) (1 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,6, n=8) (1	,5-1,7, n=6) ,7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2) ,4-1,6, n=2)	
OTU 3 OTU 5 OTU 9 OTU 11	(5,8-6,1, n= $5,8\pm0,06$ (5,8-5,9, n= (5,9-6,0, n= (5,7-6,0, n= $6,0\pm0,13$ (5,8-6,2, n=	$ \begin{array}{lll} 6) & (5,1-5,4), \\ & 5,4\pm0,1 \\ 3) & (5,3-5,6), \\ 2) & (5,4-5,6), \\ 2) & (5,2-5,2), \\ & 5,4\pm0,1 \\ 8) & (5,3-5,6), \\ & 5,4\pm0,2 \\ \end{array} $	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0 22 0,8 ±	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ±	2,5, n=6) (1 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 2,6, n=8) (1 1,0,19	,5-1,7, n=6) ,7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2) ,4-1,6, n=2) ,7 ± 0,12 ,5-1,9, n=8)	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14	(5,8-6,1,n= $5,8\pm0,06$ (5,8-5,9,n= (5,9-6,0,n= (5,7-6,0,n= $6,0\pm0,13$ (5,8-6,2,n= 4 $6,0\pm0,14$	$ \begin{array}{lll} 6) & (5,1-5,4), \\ & 5,4\pm0,1 \\ 3) & (5,3-5,6), \\ 2) & (5,4-5,6), \\ 2) & (5,2-5,2), \\ & 5,4\pm0,1 \\ 8) & (5,3-5,6), \\ & 5,4\pm0,2 \\ \end{array} $	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0 22 0,8 ±	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ±	2,5, n=6) (1 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 2,6, n=8) (1 1,0,19	$\begin{array}{l} ,5\text{-}1,7, \text{n=6}) \\ 7 \pm 0,12 \\ ,6\text{-}1,8, \text{n=3}) \\ ,7\text{-}1,7, \text{n=2}) \\ ,4\text{-}1,6, \text{n=2}) \\ 7 \pm 0,12 \\ ,5\text{-}1,9, \text{n=8}) \\ 5 \pm 0,12 \end{array}$	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14	(5,8-6,1, n= 5,8 ± 0,06 (5,8-5,9, n= (5,9-6,0, n= (5,7-6,0, n= 6,0 ± 0,13 (5,8-6,2, n= 4 6,0 ± 0,14 (5,8-6,2, n=	$ \begin{array}{lll} (5,1-5,4,\\ &5,4\pm0,1\\ 3) & (5,3-5,6,\\ 2) & (5,4-5,6,\\ 2) & (5,2-5,2,\\ 5,4\pm0,1\\ 8) & (5,3-5,6,\\ 5,4\pm0,2\\ 8) & (5,2-5,8,\\ \end{array} $	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0 22 0,8 ± n=8) (0,8-0	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-:	2,5, n=6) (1 : 0,12 1, 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 : 0,14 1, 2,6, n=8) (1 : 0,19 1, 2,5, n=8) (1	,5-1,7, n=6) 7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2) ,4-1,6, n=2) 7 ± 0,12 ,5-1,9, n=8) 5 ± 0,12 ,4-1,7, n=8)	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14	$(5,8-6,1, n=5,8\pm0,06)$ $(5,8-5,9, n=6,9-6,0, n=6,0\pm0,13)$ $(5,8-6,2, n=6,0\pm0,14)$ $(5,8-6,2, n=6,0\pm0,14)$ $(5,8-6,2, n=6,0\pm0,14)$	$ \begin{array}{c} (6) & (5,1-5,4), \\ & 5,4\pm0,1 \\ 3) & (5,3-5,6, \\ 2) & (5,4-5,6, \\ 2) & (5,2-5,2, \\ 5,4\pm0,1 \\ 8) & (5,3-5,6, \\ 5,4\pm0,2 \\ 8) & (5,2-5,8, \\ \end{array} $	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0 22 0,8 ± n=8) (0,8-0	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ±	2,5, n=6) (1 : 0,12 1, 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 : 0,14 1, : 0,19 1, 2,5, n=8) (1	$\begin{array}{l} ,5\text{-}1,7,\text{n=6})\\ 7\pm0,12\\ ,6\text{-}1,8,\text{n=3})\\ ,7\text{-}1,7,\text{n=2})\\ ,4\text{-}1,6,\text{n=2})\\ 7\pm0,12\\ ,5\text{-}1,9,\text{n=8})\\ 5\pm0,12\\ ,4\text{-}1,7,\text{n=8})\\ \end{array}$	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2	(5,8-6,1, n= 5,8 ± 0,06 (5,8-5,9, n= (5,9-6,0, n= (5,7-6,0, n= 6,0 ± 0,13 (5,8-6,2, n= 4 6,0 ± 0,14 (5,8-6,2, n= 5,5 ± 0,12 (5,3-5,7, n=	(5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6, 2) (5,2-5,2, 5,4 ± 0,1 8) (5,3-5,6, 5,4 ± 0,2 8) (5,2-5,8, 4,9 ± 0,1 9) (4,7-5,1,	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0 22 0,8 ± n=8) (0,8-0 22 0,8 ± n=9) (0,8-0	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 0,03 1,9 ±	2,5, n=6) (1 1,0,12 1, 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 1,0,19 1, 2,5, n=8) (1 1,0,19 1, 2,5, n=8) (1 1,0,19 1, 2,0,19 1, 2,0,09 1, 2,0,0 n=9) (1	$\begin{array}{l} ,5\text{-}1,7,\text{n=6})\\ 7\pm0,12\\ ,6\text{-}1,8,\text{n=3})\\ ,7\text{-}1,7,\text{n=2})\\ ,4\text{-}1,6,\text{n=2})\\ 7\pm0,12\\ ,5\text{-}1,9,\text{n=8})\\ 5\pm0,12\\ ,4\text{-}1,7,\text{n=8})\\ \end{array}$	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14	(5,8-6,1, n= 5,8 ± 0,06 (5,8-5,9, n= (5,9-6,0, n= (5,7-6,0, n= 6,0 ± 0,13 (5,8-6,2, n= 4 6,0 ± 0,14 (5,8-6,2, n= 5,5 ± 0,12 (5,3-5,7, n= 5,5	$\begin{array}{c} (6) \qquad \qquad (5,1-5,4), \\ 5,4\pm0,1\\ 3) \qquad (5,3-5,6), \\ 2) \qquad (5,4-5,6), \\ 2) \qquad (5,2-5,2), \\ 5,4\pm0,1\\ 8) \qquad (5,3-5,6), \\ 5,4\pm0,2\\ 8) \qquad (5,2-5,8), \\ \hline \\ 4,9\pm0,1\\ 9) \qquad (4,7-5,1), \\ 5,0 \end{array}$	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 12 0,9 ± n=8) (0,8-0 12 0,8 ± n=8) (0,8-0 12 0,8 ± n=9) (0,8-0 0,8-0	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 1,9, n=9) (1,8-: 1,9	2,5, n=6) (1 1,0,12 1, 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 2,6, n=8) (1 2,5, n=8) (1 2,0,19 1, 2,5, n=8) (1 1,0,09 1, 2,0, n=9) (1	$\begin{array}{l} (5-1,7,n=6)\\ 7\pm0,12\\ (6-1,8,n=3)\\ (7-1,7,n=2)\\ (4-1,6,n=2)\\ 7\pm0,12\\ (5-1,9,n=8)\\ 5\pm0,12\\ (4-1,7,n=8)\\ \end{array}$	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2 OTU 3	(5,8-6,1, n= 5,8 ± 0,06 (5,8-5,9, n= (5,9-6,0, n= (5,7-6,0, n= 6,0 ± 0,13 (5,8-6,2, n= 4 6,0 ± 0,14 (5,8-6,2, n= 5,5 ± 0,12 (5,3-5,7, n= 5,5 (n=1)	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6, 5,4 ± 0,1 8) (5,3-5,6, 5,4 ± 0,2 8) (5,2-5,8, 4,9 ± 0,1 5,0 (n=1)	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 12 0,9 ± n=8) (0,8-0 12 0,8 ± n=8) (0,8-0 12 0,8 ± n=9) (0,8-0 0,8-0 0,8-0	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 0,03 1,9 ± 1,9 (n=1)	2,5, n=6) (1 1,0,12 1,2 2,5, n=3) (1 2,5, n=2) (1 2,5, n=2) (1 2,4, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 2,5, n=8) (1 2,0,19 1,2 2,5, n=8) (1 1,0,09 1,2 2,0, n=9) (1,1 1,1 1,1 1,1 1,1 1,1 1,1 1,1	5-1,7, $n=6$) $7 \pm 0,12$ 6-1,8, $n=3$) 7-1,7, $n=2$) 4-1,6, $n=2$) 5-1,9, $n=8$) $5\pm 0,12$ $5\pm 0,12$	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2 OTU 3 OTU 4	$(5,8-6,1, n=$ $5,8 \pm 0,06$ $(5,8-5,9, n=$ $(5,9-6,0, n=$ $(5,7-6,0, n=$ $6,0 \pm 0,13$ $(5,8-6,2, n=$ 4 $(5,8-6,2, n=$ $5,5 \pm 0,12$ $(5,3-5,7, n=$ $5,5$ $(n=1)$ $(5,5-5,5, n=$	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6, 5,4 ± 0,1 8) (5,3-5,6, 5,4 ± 0,2 8) (5,2-5,8, 4,9 ± 0,1 9) (4,7-5,1, 5,0 (n=1) 2) (4,9-5,0,	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 12 0,9 ± n=8) (0,8-0 12 0,8 ± n=9) (0,8-0 0,8 (n=1) n=2) (0,8-0	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 0,03 1,9 ± 1,9 (n=1) 8, n=2) (1,7-:	2,5, n=6) (1 1,0,12 1,2 2,5, n=3) (1 2,5, n=2) (1 2,5, n=2) (1 2,6, n=8) (1 2,6, n=8) (1 2,6, n=8) (1 2,0, n=9) (1 2,0, n=9) (1 2,0, n=2) (1	,5-1,7, n=6) ,7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2) ,4-1,6, n=2) ,7 ± 0,12 ,5-1,9, n=8) ,5 ± 0,12 ,4-1,7, n=8) 4 ± 0,07 ,4-1,6, n=9) 4 ==1) ,5-1,6, n=2)	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2 OTU 3	$(5,8-6,1, n=5,8\pm0,06)$ $(5,8-5,9, n=6,0\pm0,13)$ $(5,7-6,0, n=6,0\pm0,13)$ $(5,8-6,2, n=6,0\pm0,14)$ $(5,8-6,2, n=6,0\pm0,14)$ $(5,8-6,2, n=6,0\pm0,14)$ (5,3-5,7, n=5,5) (n=1) (5,5-5,5, n=5,7)	$\begin{array}{lll} (5,1-5,4,\\ &5,4\pm0,1\\ 5,4\pm0,1\\ 3) & (5,3-5,6,\\ 2) & (5,4-5,6,\\ 5,4\pm0,1\\ 8) & (5,3-5,6,\\ 5,4\pm0,2\\ 8) & (5,2-5,8,\\ &&&&\\$	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0 22 0,8 ± n=8) (0,8-0 12 0,8 ± n=9) (0,8-0 0,8 (n=1) n=2) (0,8-0 0,8	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 0,05 2,4 ± 0,05 2,3 ± 0,05 1,9 =0 0,03 1,9 ± 0,03 1,9 ± 1,9 (n=1) 1,8, n=2) (1,7-: 2,0	2,5, n=6) (1 : 0,12 1, 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 : 0,19 1, : 0,09 1, : 0,09 1, : 0,09 1, (1,0,0) (1,0)	,5-1,7, n=6) 7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2) ,4-1,6, n=2) 7 ± 0,12 ,5-1,9, n=8) 5 ± 0,12 ,4-1,7, n=8) 4 ± 0,07 ,4-1,6, n=9) 4 10,07	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2 OTU 3 OTU 4 OTU 5	$(5,8-6,1, n=5,8\pm0,06)$ $(5,8-5,9, n=6,9-6,0, n=6,0\pm0,13)$ $(5,8-6,2, n=6,0\pm0,14)$ $(5,8-6,2, n=6,0\pm0,14)$ $(5,8-6,2, n=6,0\pm0,12)$ $(5,3-5,7, n=6,0\pm0,12)$ $(5,3-5,7, n=6,0\pm0,12)$ $(5,3-5,7, n=6,0\pm0,12)$ $(5,5-5,5,10=6,0\pm0,12)$ $(5,5-5,5,10=6,0\pm0,12)$	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6, 5,4 ± 0,1 8) (5,3-5,6, 5,4 ± 0,2 4,9 ± 0,1 9) (4,7-5,1, 5,0 (n=1) 2) (4,9-5,0, 4,7 (n=1)	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0 22 0,8 ± n=8) (0,8-0 0,8 (n=1) n=2) (0,8-0 0,8 (n=1)	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 0,03 1,9 ± 1,9 (n=1) 8, n=2) (1,7-: 2,0 (n=1)	2,5, n=6) (1 1,0,12 1, 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 1,0,19 1, 2,5, n=8) (1 1,0,19 1, 2,5, n=8) (1 1,0,19 1, 1,0,09 1,	,5-1,7, n=6) ,7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2) ,4-1,6, n=2) ,7 ± 0,12 ,5-1,9, n=8) 5 ± 0,12 ,4-1,7, n=8) 4 ± 0,07 ,4-1,6, n=9) 4 i=1) ,5-1,6, n=2) 3 i=1)	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2 OTU 3 OTU 4	$(5,8-6,1, n=5,8\pm0,06)$ $(5,8-5,9, n=6,9-6,0, n=6,0\pm0,13)$ $(5,9-6,0, n=6,0\pm0,13)$ $(5,8-6,2, n=6,0\pm0,14)$ $(5,8-6,2, n=5,5\pm0,12)$ (5,3-5,7, n=5,5+6,2) (n=1) (5,5-5,5, n=5,7) (n=1) (5,5-5,5,0,13)	$\begin{array}{c} (6) & (5,1-5,4,\\ & 5,4\pm0,1\\ & 5,4\pm0,1\\ 3) & (5,3-5,6,\\ 2) & (5,4-5,6,\\ 2) & (5,2-5,2,\\ & 5,4\pm0,1\\ 8) & (5,3-5,6,\\ & 5,4\pm0,2\\ 8) & (5,2-5,8,\\ \hline \\ & & 4,9\pm0,1\\ 9) & (4,7-5,1,\\ & 5,0\\ & (n=1)\\ 2) & (4,9-5,0,\\ & 4,7\\ & (n=1)\\ & 4,9\pm0,1 \end{array}$	n=6 (0,8-0)	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 0,03 1,9 ± 0,03 1,9 ± 0,03 (n=1) 0,03 1,9 ±	2,5, n=6) (1 1,0,12 1, 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 2,6, n=8) (1 2,5, n=8) (1 2,6, n=8) (1 2,0,19 1, 2,0, n=9) (1 1,0,09 1, 2,0, n=2) (1 1,0,09 1, 1,0,09 1,	$\begin{array}{l} (5-1,7,n=6)\\ (7\pm0,12)\\ (6-1,8,n=3)\\ (7-1,7,n=2)\\ (4-1,6,n=2)\\ (7\pm0,12)\\ (5-1,9,n=8)\\ (5\pm0,12)\\ (4-1,7,n=8)\\ (4\pm0,07)\\ (4-1,6,n=9)\\ (4=1)\\ (5-1,6,n=2)\\ (3=1)\\ (4\pm0,07)\\ (4+1,6,n=2)\\ (3=1)\\ (4\pm0,07)\\ (4+1,6,n=2)\\ (3+1)\\ (4\pm0,07)\\ (4+1,6,n=2)\\ (4+1,6,n$	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6	(5,8-6,1, n= 5,8 ± 0,06 (5,8-5,9, n= (5,9-6,0, n= 6,0 ± 0,13 (5,8-6,2, n= 4 6,0 ± 0,14 (5,8-6,2, n= 5,5 ± 0,12 (5,3-5,7, n= 5,5 (n=1) (5,5-5,5, n= 5,7 (n=1) 5,5 ± 0,18 (5,1-5,8, n=	$\begin{array}{c} (6) & (5,1-5,4), \\ 5,4\pm0,1 \\ 5,4\pm0,1 \\ 3) & (5,3-5,6), \\ 2) & (5,4-5,6), \\ 2) & (5,2-5,2), \\ 5,4\pm0,1 \\ 8) & (5,3-5,6), \\ 5,4\pm0,2 \\ 8) & (5,2-5,8), \\ \hline \\ 4,9\pm0,1 \\ 9) & (4,7-5,1), \\ 5,0 \\ (n=1) \\ 2) & (4,9-5,0), \\ 4,7 \\ (n=1) \\ 4,9\pm0,1 \\ 23) & (4,6-5,1), \end{array}$	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 12 0,9 ± n=8) (0,8-0 12 0,8 ± n=9) (0,8-0 0,8 (n=1) n=2) (0,8-0 0,8 (n=1) 12 0,8 ± (0,8-0 0,8 (n=1) 0,8-0 0,8 (n=1)	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 0,03 1,9 ±	2,5, n=6) (1 2,5, n=3) (1 2,5, n=2) (1 2,5, n=2) (1 2,4, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 2,5, n=8) (1 2,0,19 1, 2,0, n=9) (1 2,0, n=9) (1 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	,5-1,7, n=6) ,7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2) ,4-1,6, n=2) ,7 ± 0,12 ,5-1,9, n=8) 5 ± 0,12 ,4-1,7, n=8) 4 ± 0,07 ,4-1,6, n=9) 4 =1) ,5-1,6, n=2) 3 ==1) 4 ± 0,07 ,3-1,5, n=23)	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2 OTU 3 OTU 4 OTU 5	$(5,8-6,1, n=$ $5,8 \pm 0,06$ $(5,8-5,9, n=$ $(5,9-6,0, n=$ $(5,7-6,0, n=$ $6,0 \pm 0,13$ $(5,8-6,2, n=$ $4 6,0 \pm 0,14$ $(5,8-6,2, n=$ $5,5 \pm 0,12$ $(5,3-5,7, n=$ $5,5 (n=1)$ $(5,5-5,5, n=$ $5,7 (n=1)$ $5,5 \pm 0,18$ $(5,1-5,8, n=$ $5,5 \pm 0,10$	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6, 2) (5,2-5,2, 5,4 ± 0,1 8) (5,3-5,6, 5,4 ± 0,2 8) (5,2-5,8, 9) (4,7-5,1, 5,0 (n=1) 2) (4,9-5,0, 4,7 (n=1) 4,9 ± 0,1 23) (4,6-5,1, 4,9 ± 0,1	n=6 (0,8-0)	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 1,9 (n=1) 1,8, n=2) (1,7-: 2,0 (n=1) 0,03 1,9 ± 1,9 (n=1) 1,9 (n=1)	2,5, n=6) (1 2,5, n=3) (1 2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 2,6, n=8) (1 2,0,19 1, 2,5, n=8) (1 1,0,09 1, 2,0, n=9) (1 1,0,09 1, 2,0, n=2) (1 1,0,09 1,0 2,0, n=2) (1 1,0,09 1,0 1,0,09 1,	$\begin{array}{l} (5-1,7,n=6)\\ (7\pm0,12)\\ (6-1,8,n=3)\\ (7-1,7,n=2)\\ (4-1,6,n=2)\\ (7\pm0,12)\\ (5-1,9,n=8)\\ (5\pm0,12)\\ (4-1,7,n=8)\\ \\\hline \\ (4\pm0,07)\\ (4-1,6,n=9)\\ (4=1)\\ (5-1,6,n=2)\\ (3)\\ (3)\\ (1=1)\\ (4\pm0,07)\\ (3-1,5,n=23)\\ (4\pm0,07)\\ (4\pm0,07)\\ (3-1,5,n=23)\\ (4\pm0,07)\\ \end{array}$	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6 OTU 7+9	$\begin{array}{c} (5,8-6,1,n=\\5,8\pm0,06\\ (5,8-5,9,n=\\(5,9-6,0,n=\\(5,7-6,0,n=\\6,0\pm0,13\\ (5,8-6,2,n=\\4\ 6,0\pm0,14\\ (5,8-6,2,n=\\5,5\pm0,12\\ (5,3-5,7,n=\\5,5\\ (n=1)\\(5,5-5,5,n=\\5,7\\ (n=1)\\5,5\pm0,18\\ (5,1-5,8,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5-5,6,5-5,6,n=\\5,5-5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,$	6) (5,1-5,4, 5,4 ± 0,1 3) (5,3-5,6, 2) (5,4-5,6, 2) (5,2-5,2, 5,4 ± 0,1 8) (5,3-5,6, 5,4 ± 0,2 8) (5,2-5,8, 9) (4,7-5,1, 5,0 (n=1) 2) (4,9-5,0, 4,7 (n=1) 4,9 ± 0,1 (4,6-5,1, 4,9 ± 0,1 (4,6-5,1, 4,9 ± 0,1	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0 22 0,8 ± n=8) (0,8-0 23 0,8 ± n=9) (0,8-0 0,8 (n=1) 12 0,8 ± n=1) (0,8-0 0,8 (n=1) 12 0,8 ± n=1) (0,8-0 0,8 (n=1) 13 0,8 ± 0,8-0 0,8 (n=1) 14 0,8-0 0,8 (n=1) 15 0,8 ± 0,8-0 0,8 (n=1) 16 0,8-0 0,8 (n=1)	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 0,03 1,9 ± 0,03 1,9 ± 0,03 1,9 ± 0,03 1,9 ± 0,03 1,9 ± 0,03 1,9 ± 0,04 1,9 ± 0,04 1,9 ± 0,03 1,9 ± 0,04 1,9 ± 0,04 1,9 ± 0,04 1,9 ± 0,04 1,9 ± 0,04 1,9 ±	2,5, n=6) (1 : 0,12 1,2,5, n=3) (1 2,5, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 : 0,19 : 0,19 : 0,09 1,2,0, n=9) (1 1,0,09	,5-1,7, n=6) ,7 ± 0,12 ,6-1,8, n=3) ,7-1,7, n=2) ,4-1,6, n=2) ,7 ± 0,12 ,5-1,9, n=8) ,5 ± 0,12 ,4-1,7, n=8) 4 ± 0,07 ,4-1,6, n=9) 4 ==1) ,5-1,6, n=2) 3 ==1) 4 ± 0,07 ,3-1,5, n=23) 4 ± 0,07 ,3-1,5, n=16)	
OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6	$\begin{array}{c} (5,8-6,1,n=\\5,8\pm0,06\\ (5,8-5,9,n=\\(5,9-6,0,n=\\(5,7-6,0,n=\\6,0\pm0,13\\ (5,8-6,2,n=\\4\ 6,0\pm0,14\\ (5,8-6,2,n=\\5,5\pm0,12\\ (5,3-5,7,n=\\5,5\\ (n=1)\\(5,5-5,5,n=\\5,7\\ (n=1)\\5,5\pm0,18\\ (5,1-5,8,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5\pm0,10\\ (5,3-5,6,n=\\5,5-5,6,5-5,6,n=\\5,5-5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,$	$\begin{array}{c} (6) & (5,1-5,4,\\ & 5,4\pm0,1\\ 5,4\pm0,1\\ 3) & (5,3-5,6,\\ 2) & (5,4-5,6,\\ 2) & (5,2-5,2,\\ 5,4\pm0,1\\ 8) & (5,3-5,6,\\ 5,4\pm0,2\\ 8) & (5,2-5,8,\\ \\\hline \\ & 4,9\pm0,1\\ 2) & (4,7-5,1,\\ 5,0\\ & (n=1)\\ 2) & (4,9-5,0,\\ 4,7\\ & (n=1)\\ 4,9\pm0,1\\ 16) & (4,6-5,2,\\ 4,8\pm0,1\\ \end{array}$	n=6) (0,8-0 15 0,9 ± n=3) (0,8-0 n=2) (0,9-0 n=2) (0,8-0 2 0,9 ± n=8) (0,8-0 22 0,8 ± n=8) (0,8-0 12 0,8 ± n=9) (0,8-0 0,8 (n=1) n=2) (0,8-0 0,8 ± n=1) (0,8-0 0,8 ± n=1) (0,8-0 0,8 ± n=1) (0,8-0 0,8 ± n=1) (0,8-0 0,8 ± n=2) (0,8-0 0,8 ± n=2) (0,8-0 0,8 ± n=1) (0,8-0 0,8 ± n=1) (0,8-0 0,8 ± n=2) (0,8-0 0,8 ± n=2) (0,8-0 0,8 ± n=1) (0,8-0	9, n=6) (2,3-: 0,06 2,4 ± 9, n=3) (2,3-: 9, n=2) (2,4-: 0,05 2,4 ± 9, n=8) (2,2-: 0,05 2,3 ± 9, n=8) (1,9-: 0,03 1,9 ± 0,03 1,9 ± 1,9 (n=1) 1,8, n=2) (1,7-: 0,03 1,9 ± 0,03 1,9 ± 0,04 1,9 ± 0,04 1,9 ± 0,04 2,0 ±	2,5, n=6) (1 : 0,12 1, 2,5, n=3) (1 2,4, n=2) (1 2,4, n=2) (1 2,6, n=8) (1 : 0,19 1, 2,5, n=8) (1 : 0,09 1, 2,0, n=9) (1 (n) (n) (n) (n) (n) (n) (n) (n) (n) (n)	$\begin{array}{l} (5-1,7,n=6)\\ (7\pm0,12)\\ (6-1,8,n=3)\\ (7-1,7,n=2)\\ (4-1,6,n=2)\\ (7\pm0,12)\\ (5-1,9,n=8)\\ (5\pm0,12)\\ (4-1,7,n=8)\\ \\\hline \\ (4\pm0,07)\\ (4-1,6,n=9)\\ (4=1)\\ (5-1,6,n=2)\\ (3)\\ (3)\\ (1=1)\\ (4\pm0,07)\\ (3-1,5,n=23)\\ (4\pm0,07)\\ (4\pm0,07)\\ (3-1,5,n=23)\\ (4\pm0,07)\\ \end{array}$	

4. Mesures alaires (mesures de l'holotype en gras à l'OTU 15)

Mâle	LG1D	LG2D	LG3D	LG31	LG32	LG4D	LG41
OTU 2	7,0 ± 0,00	39,1 ± 1,18	37,6 ± 0,48	14,3 ± 0,50	16,9 ± 1,03	33,3 ± 0,96	10,0 ± 0,00
	(7,0-7,0, n=4)	(37,5-40,0, n=4)	(37,0-38,0, n=4)	(14,0-15,0, n=4)	(15,5-18,0, n=4)	(32,0-34,0, n=4)	(10,0-10,0, n=4)
OTU 3	$7,8 \pm 0,29$	$38,7 \pm 1,15$	$36,7 \pm 1,53$	$13,7 \pm 0,58$	$17,3 \pm 0,58$	$33,0 \pm 1,00$	$10,2 \pm 0,76$
07115	(7,5-8,0, n=3)	(38,0-40,0, n=3)	(35,0-38,0, n=3)	(13,0-14,0, n=3)	(17,0-18,0, n=3)	(32,0-34,0, n=3)	(9,5-11,0, n=3)
OTU 5	(7,0-7,0, n=2)	(37,5-40,0, n=2)	(36,5-38,0, n=2)	(13,5-14,0, n=2)	(16,5-17,0, n=2)	(31,5-32,0, n=2)	(10,0-10,5, n=2)
OTU 9	(7,0-7,0, n=2)	(37,5-38,0, n=2)	(36,0-36,5, n=2)	(13,5-14,0, n=2)	(17,0-18,0, n=2)	(32,0-32,5, n=2)	(10,0-10,0, n=2)
OTU 11	7,0 ± 0,00 (7,0-7,0, n=8)	38,3 ± 0,88 (36,5-39,0, n=8)	36,8 ± 0,92 (35,5-38,5, n=8)	14,1 ± 0,62 (13,0-15,0, n=8)	17,9 ± 0,62 (17,0-18,5, n=8)	33,3 ± 0,71 (32,0-34,0, n=8)	10,2 ± 0,37 (9,5-10,5, n=8)
OTI 12 1	46,9 ± 0,22	38.3 ± 0.91	36.8 ± 0.90	14,1 ± 0,60	(17,0-18,3,11=8) $17,6 \pm 0,70$	32.6 ± 0.95	(9, 5-10, 5, 11=6) $10, 2 \pm 0, 44$
010 12+1-	(6,5-7,0, n=9)	(37,0-39,0, n=9)	(35,5-38,0, n=9)	(13,5-15,0, n=9)	(17,0-19,0, n=9)	(31,5-34,0, n=9)	(9,5-11,0, n=9)
OTU 16	8,0	44,0	42,0	15,5	18,5	38,5	11,0
0.0.0	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
Femelle	,	,					,
OTU 2	6,8 ± 0,39	36,6 ± 0,93	35,6 ± 0,93	13,3 ± 0,39	16,3 ± 0,76	31,6 ± 1,21	9,6 ± 0,35
	(6,0-7,0, n=7)	(36,0-38,5, n=7)	(34,5-37,0, n=7)	(13,0-14,0, n=7)	(15,0-17,0, n=7)	(30,5-34,0, n=7)	(9,0-10,0, n=7)
OTU 3	8,0	38,0	37,0	14,0	17,5	33,0	11,0
	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 4	$6,8 \pm 0,29$	$36,5 \pm 0,50$	$35,7 \pm 0,58$	13,2 ± 0,29	16,5 ± 0,87	$32,0 \pm 0,00$	9,8 ± 0,29
	(6,5-7,0, n=3)	(36,0-37,0, n=3)	(35,0-36,0, n=3)	(13,0-13,5, n=3)	(15,5-17,0, n=3)	(32,0-32,0, n=3)	(9,5-10,0, n=3)
OTU 5	7,0	37,0	35,05	13,0	16,5	31,0	10,0
	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)	(n=1)
OTU 6	6.6 ± 0.43	36,8 ± 1,03	35,6 ± 1,00	13,2 ± 0,47	16,7 ± 0,70	31,5 ± 0,99	9,6 ± 0,50
OT117 6	(6,0-7,0, n=23)	(34,5-39,0, n=23)		(12,5-14,5, n=23)			
OTU 7+9	6,3 ± 0,44	36,8 ± 0,82	$35,6 \pm 0.87$	13.0 ± 0.46	16.6 ± 0.54	31,6 ± 0,89	9,7 ± 0,35
OTIL 40 4	(5,5-7,0, n=16)		(33,5-37,5, n=16)				
UIU 12+1	46.6 ± 0.43	37.0 ± 1.51	35.7 ± 1.30	13.3 ± 0.64	16.6 ± 0.89	31.4 ± 0.95	9.6 ± 0.39
OTU 15	(6,0-7,0, n=17) 7,1 ± 0,85 ; 7,0	(34,5-40,0, n=17)		(12,5-14,5, n=17)		(30,0-33,0, n=17)	
010 15	7,1 ± 0,85; 7,0 (6,0-8,0, n=4)	42,8 ± 2,06; 43,0 (40,0-45,0, n=4)	41,4 ± 1,70 ; 42,0 (39,0-43,0, n=4)	(14,0-16,0, n=4)	(17,0-19,0, n=4)	(35,0-38,0, n=4)	(10,0-11,0, n=4)
OTU 16	(0,0-8,0,11=4) $8,0 \pm 0,00$	(40,0-45,0,11=4) $41,5 \pm 0,87$	(39,0-43,0,11=4) $40,3 \pm 0,58$	(14,0-16,0, 11=4) 14,2 ± 0,29	(17,0-19,0,11=4) $17,3 \pm 0,58$	$36,3 \pm 0,58$	10,5 ± 0,50
310 10	(8,0-8,0, n=3)	(41,0-42,5, n=3)	(40,0-41,0, n=3)	(14,0-14,5, n=3)	(17,0-18,0, n=3)	(36,0-37,0, n=3)	(10,0-11,0, n=3)
	(5,5 5,5, 11–0)	(, 0 12, 0, 11–0)	(.5,5 11,0,11-0)	(. 1,0 1 1,0, 11–0)	, . , ,		
Mâle	I G42	L CSD	I G51	I G52			
Mâle OTU 2	LG42	LG5D 25.9 + 0.25	LG51	LG52	Fext	Fint	Finf
Mâle OTU 2	7,5 ± 0,41	25,9 ± 0,25	14,0 ± 0,00	9,6 ± 0,48	Fext 3,2 ± 0,69	Fint 4,2 ± 0,42	Finf 3,3 ± 0,15
					Fext	Fint	Finf
OTU 2	7,5 ± 0,41 (7,0-8,0, n=4)	25,9 ± 0,25 (25,5-26,0, n=4)	14,0 ± 0,00 (14,0-14,0, n=4)	9,6 ± 0,48 (9,0-10,0, n=4)	Fext 3,2 ± 0,69 (2,3-3,8, n=4)	Fint 4,2 ± 0,42 (3,7-4,6, n=4)	Finf 3,3 ± 0,15 (3,2-3,5, n=4)
OTU 2	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50	25,9 ± 0,25 (25,5-26,0, n=4) 26,7 ± 1,15	14,0 ± 0,00 (14,0-14,0, n=4) 13,7 ± 0,58	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15
OTU 2 OTU 3	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3)	25,9 ± 0,25 (25,5-26,0, n=4) 26,7 ± 1,15 (26,0-28,0, n=3)	14,0 ± 0,00 (14,0-14,0, n=4) 13,7 ± 0,58 (13,0-14,0, n=3)	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3)
OTU 2 OTU 3 OTU 5	7.5 ± 0.41 (7.0-8.0, n=4) 8.0 ± 0.50 (7.5-8.5, n=3) (7.5-8.0, n=2) (7.0-7.0, n=2) 7.7 ± 0.46	25,9 ± 0,25 (25,5-26,0, n=4) 26,7 ± 1,15 (26,0-28,0, n=3) (25,5-26,0, n=2) (25,0-25,5, n=2) 25,9 ± 0,78	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=3)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64 \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) (3,6-4,4, n=2) 4,2 ± 0,32	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11	7.5 ± 0.41 (7.0-8.0, n=4) 8.0 ± 0.50 (7.5-8.5, n=3) (7.5-8.0, n=2) (7.0-7.0, n=2) 7.7 ± 0.46 (7.0-8.0, n=8)	25,9 ± 0,25 (25,5-26,0, n=4) 26,7 ± 1,15 (26,0-28,0, n=3) (25,5-26,0, n=2) (25,0-25,5, n=2) 25,9 ± 0,78 (24,5-27,0, n=8)	14,0 ± 0,00 (14,0-14,0, n=4) 13,7 ± 0,58 (13,0-14,0, n=3) (13,5-14,0, n=2) (13,5-13,5, n=2) 14,1 ± 0,64 (13,0-15,0, n=8)	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) (3,6-4,4, n=2) 4,2 ± 0,32 (3,7-4,6, n=8)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11	7.5 ± 0.41 (7.0-8.0, n=4) 8.0 ± 0.50 (7.5-8.5, n=3) (7.5-8.0, n=2) (7.0-7.0, n=2) 7.7 ± 0.46 (7.0-8.0, n=8) 48.1 ± 0.55	25,9 ± 0,25 (25,5-26,0, n=4) 26,7 ± 1,15 (26,0-28,0, n=3) (25,5-26,0, n=2) (25,0-25,5, n=2) 25,9 ± 0,78 (24,5-27,0, n=8) 25,6 ± 0,95	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=3)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39 \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51	Fint 4.2 ± 0.42 (3,7-4,6, n=4) 4.1 ± 0.60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4.2 ± 0.32 (3,7-4,6, n=8) 4.2 ± 0.40	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=3)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9) \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=3)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0 \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) (3,6-4,4, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=3)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9) \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=3)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0 \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) (3,6-4,4, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 OTU 16	7.5 ± 0.41 (7.0-8.0, n=4) 8.0 ± 0.50 (7.5-8.5, n=3) (7.5-8.0, n=2) (7.0-7.0, n=2) 7.7 ± 0.46 (7.0-8.0, n=8) 48.1 ± 0.55 (7.5-9.0, n=9) 9.0 (n=1)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \\ \text{(n=1)} \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=3)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) (3,6-4,4, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 OTU 16 Femelle OTU 2	7.5 ± 0.41 (7.0-8.0, n=4) 8.0 ± 0.50 (7.5-8.5, n=3) (7.5-8.5, n=2) (7.0-7.0, n=2) 7.7 ± 0.46 (7.0-8.0, n=8) 48.1 ± 0.55 (7.5-9.0, n=9) 9.0 (n=1)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \\ (\text{n=1}) \\ \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=3)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+1- OTU 16 Femelle	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \\ \text{(n=1)} \\ \\ \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+1 OTU 16 Femelle OTU 2 OTU 3	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \\ (\text{n=1}) \\ \\ \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 OTU 16 Femelle OTU 2	$\begin{array}{c} 7.5 \pm 0.41 \\ (7.0-8.0, n=4) \\ 8.0 \pm 0.50 \\ (7.5-8.5, n=3) \\ (7.5-8.5, n=2) \\ (7.0-7.0, n=2) \\ 7.7 \pm 0.46 \\ (7.0-8.0, n=8) \\ 48.1 \pm 0.55 \\ (7.5-9.0, n=9) \\ 9.0 \\ (n=1) \\ \hline \\ 7.1 \pm 0.48 \\ (6.5-8.0, n=7) \\ 8.0 \\ (n=1) \\ 7.8 \pm 0.29 \end{array}$	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5-26,0,n=4) \\ 26,7 \pm 1,15 \\ (26,0-28,0,n=3) \\ (25,5-26,0,n=2) \\ (25,0-25,5,n=2) \\ 25,9 \pm 0,78 \\ (24,5-27,0,n=8) \\ 25,6 \pm 0,95 \\ (24,0-27,0,n=9) \\ 31,0 \\ (n=1) \\ \\ 25,2 \pm 0,81 \\ (24,5-26,5,n=7) \\ 27,0 \\ (n=1) \\ 26,0 \pm 0,00 \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=3)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \end{array}$	$\begin{array}{c} 9.6 \pm 0.48 \\ (9.0\text{-}10.0, \text{n=4}) \\ 9.7 \pm 0.29 \\ (9.5\text{-}10.0, \text{n=3}) \\ (9.5\text{-}9.5, \text{n=2}) \\ (9.0\text{-}9.0, \text{n=2}) \\ 9.6 \pm 0.44 \\ (9.0\text{-}10.0, \text{n=8}) \\ 9.7 \pm 0.56 \\ (9.0\text{-}10.5, \text{n=9}) \\ 10.5 \\ (\text{n=1}) \\ \\ \\ 8.8 \pm 0.49 \\ (8.0\text{-}9.5, \text{n=7}) \\ 9.5 \\ (\text{n=1}) \\ \\ \end{array}$	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1)	Finf $3,3 \pm 0,15$ $(3,2\cdot3,5,n=4)$ $3,3 \pm 0,15$ $(3,1\cdot3,4,n=3)$ $(2,4\cdot2,6,n=2)$ $(3,3\cdot3,6,n=2)$ $3,1 \pm 0,35$ $(2,7\cdot3,6,n=7)$ $3,4 \pm 0,35$ $(2,9\cdot3,8,n=9)$ $3,2$ $(n=1)$ $3,1 \pm 0,23$ $(2,7\cdot3,3,n=7)$ $3,4$ $(n=1)$ $3,2 \pm 0,26$
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 OTU 16 Femelle OTU 2 OTU 3 OTU 4	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n}\text{=}4) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n}\text{=}3) \\ (25,5\text{-}26,0,\text{n}\text{=}2) \\ (25,0\text{-}25,5,\text{n}\text{=}2) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n}\text{=}8) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n}\text{=}9) \\ 31,0 \\ (\text{n}\text{=}1) \\ \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n}\text{=}7) \\ 27,0 \\ (\text{n}\text{=}1) \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n}\text{=}3) \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+1 OTU 16 Femelle OTU 2 OTU 3	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3) 7,5	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \\ \text{(n=1)} \\ \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n=7}) \\ 27,0 \\ \text{(n=1)} \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n=3}) \\ 25,5 \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+1 OTU 16 Femelle OTU 2 OTU 3 OTU 4 OTU 5	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3) 7,5 (n=1)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=2}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \\ \text{(n=1)} \\ \\ \\ \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5 (n=1)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 OTU 16 Femelle OTU 2 OTU 3 OTU 4	$\begin{array}{c} 7.5 \pm 0.41 \\ (7.0-8.0, n=4) \\ 8.0 \pm 0.50 \\ (7.5-8.5, n=3) \\ (7.5-8.5, n=2) \\ (7.5-8.0, n=2) \\ (7.0-7.0, n=2) \\ 7.7 \pm 0.46 \\ (7.0-8.0, n=8) \\ 48.1 \pm 0.55 \\ (7.5-9.0, n=9) \\ 9.0 \\ (n=1) \\ \hline \\ 7.1 \pm 0.48 \\ (6.5-8.0, n=7) \\ 8.0 \\ (n=1) \\ 7.8 \pm 0.29 \\ (7.5-8.0, n=3) \\ 7.5 \\ (n=1) \\ 7.4 \pm 0.60 \\ \end{array}$	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n}\text{=}4) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n}\text{=}3) \\ (25,5\text{-}26,0,\text{n}\text{=}2) \\ (25,0\text{-}25,5,\text{n}\text{=}2) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n}\text{=}8) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n}\text{=}9) \\ 31,0 \\ (\text{n}\text{=}1) \\ \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n}\text{=}7) \\ 27,0 \\ (\text{n}\text{=}1) \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n}\text{=}3) \\ 25,5 \\ (\text{n}\text{=}1) \\ 25,0 \pm 0,75 \\ \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ 13,2\pm0,49\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5 (n=1) 9,0 ± 0,45	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1) 2,7 ± 0,21	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,4 (n=1)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1) 2,9 ± 0,33
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 OTU 16 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3) 7,5 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3) 7,5 (n=1)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n}\text{=}4) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n}\text{=}3) \\ (25,5\text{-}26,0,\text{n}\text{=}2) \\ (25,0\text{-}25,5,\text{n}\text{=}2) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n}\text{=}8) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n}\text{=}9) \\ 31,0 \\ \text{(n}\text{=}1) \\ \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n}\text{=}7) \\ 27,0 \\ \text{(n}\text{=}1) \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n}\text{=}3) \\ 25,5 \\ \text{(n}\text{=}1) \\ 25,0 \pm 0,75 \\ (23,5\text{-}26,5,\text{n}\text{=}23) \\ \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ 13,2\pm0,49\\ (12,5-14,0,n=23)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5 (n=1) 9,5 (n=1) 9,6 (n=1) 9,7 (n=1) 9,8 (n=1) 9,9 (n=1) 9,5 (n=1) 9,5 (n=1) 9,6 (n=1) 9,7 (n=1) 9,8 (n=1) 9,9 (n=1) 9,5 (n=1) 9,5 (n=1) 9,6 (n=1) 9,7 (n=1) 9,6 (n=1) 9,7 (n=1) 9,7 (n=1) 9,8 (n=1) 9,9 (n=1) 9,5 (n=1)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1) 2,7 ± 0,21 (2,3-3,2, n=23)	Fint 4.2 ± 0.42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,7 ± 0,37 (3,0-4,4, n=23)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+1 OTU 16 Femelle OTU 2 OTU 3 OTU 4 OTU 5	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3) 7,5 (n=1) 7,4 ± 0,60 (5,5-8,0, n=23) 7,3 ± 0,32	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=3}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \\ \text{(n=1)} \\ \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n=7}) \\ 27,0 \\ \text{(n=1)} \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n=3}) \\ 25,5 \\ \text{(n=1)} \\ 25,0 \pm 0,75 \\ (23,5\text{-}26,5,\text{n=23}) \\ 25,1 \pm 0,65 \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ 13,2\pm0,49\\ (12,5-14,0,n=23)\\ 13,3\pm0,36\\ \end{array}$	$\begin{array}{c} 9.6 \pm 0.48 \\ (9.0\text{-}10.0, \text{n=4}) \\ 9.7 \pm 0.29 \\ (9.5\text{-}10.0, \text{n=3}) \\ (9.5\text{-}9.5, \text{n=2}) \\ (9.5\text{-}9.5, \text{n=2}) \\ (9.0\text{-}9.0, \text{n=2}) \\ 9.6 \pm 0.44 \\ (9.0\text{-}10.0, \text{n=8}) \\ 9.7 \pm 0.56 \\ (9.0\text{-}10.5, \text{n=9}) \\ 10.5 \\ (\text{n=1}) \\ \hline \\ 8.8 \pm 0.49 \\ (8.0\text{-}9.5, \text{n=7}) \\ 9.5 \\ (\text{n=1}) \\ \hline \\ 9.3 \pm 0.58 \\ (9.0\text{-}10.0, \text{n=3}) \\ 9.5 \\ (\text{n=1}) \\ 9.0 \pm 0.45 \\ (8.5\text{-}10.0, \text{n=23}) \\ 9.0 \pm 0.55 \\ \end{array}$	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1) 2,7 ± 0,21 (2,3-3,2, n=23) 2,8 ± 0,19	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,39	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1) 2,9 ± 0,33 (2,4-3,5, n=23) 2,8 ± 0,27
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+1: OTU 16 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6 OTU 6 OTU 7+9	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,0, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3) 7,5 (n=1) 7,4 ± 0,60 (5,5-8,0, n=23) 7,3 ± 0,32 (7,0-8,0, n=16)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n=4}) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n=2}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,5\text{-}26,0,\text{n=2}) \\ (25,0\text{-}25,5,\text{n=2}) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n=8}) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n=9}) \\ 31,0 \\ \text{(n=1)} \\ \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n=7}) \\ 27,0 \\ \text{(n=1)} \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n=3}) \\ 25,5 \\ \text{(n=1)} \\ 25,0 \pm 0,75 \\ (23,5\text{-}26,5,\text{n=23}) \\ 25,1 \pm 0,65 \\ (23,5\text{-}26,0,\text{n=16}) \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ 13,2\pm0,49\\ (12,5-14,0,n=23)\\ 13,3\pm0,36\\ (13,0-14,0,n=16)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5 (n=1) 9,0 ± 0,45 (8,5-10,0, n=23) 9,0 ± 0,45 (8,5-10,0, n=23) 9,0 ± 0,55 (8,0-10,0, n=16)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1) 2,7 ± 0,21 (2,3-3,2, n=23) 2,8 ± 0,19 (2,5-3,2, n=16)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,39 (2,9-4,3, n=16)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1) 2,9 ± 0,33 (2,4-3,5, n=23) 2,8 ± 0,27 (2,4-3,3, n=16)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+1: OTU 16 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6 OTU 6 OTU 7+9	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,5, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3) 7,5 (n=1) 7,4 ± 0,60 (5,5-8,0, n=23) 7,3 ± 0,32 (7,0-8,0, n=16) 47,5 ± 0,41	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n}\text{=}4) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n}\text{=}3) \\ (25,5\text{-}26,0,\text{n}\text{=}2) \\ (25,0\text{-}25,5,\text{n}\text{=}2) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n}\text{=}8) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n}\text{=}9) \\ 31,0 \\ (\text{n}\text{=}1) \\ \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n}\text{=}7) \\ 27,0 \\ (\text{n}\text{=}1) \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n}\text{=}3) \\ 25,5 \\ (\text{n}\text{=}1) \\ (23,5\text{-}26,5,\text{n}\text{=}23) \\ 25,1 \pm 0,65 \\ (23,5\text{-}26,0,\text{n}\text{=}16) \\ 25,3 \pm 0,69 \\ \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ \hline \\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ \hline \\ 13,2\pm0,49\\ (12,5-14,0,n=23)\\ 13,3\pm0,36\\ (13,0-14,0,n=16)\\ 13,3\pm0,59\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5 (n=1) 9,0 ± 0,45 (8,5-10,0, n=23) 9,0 ± 0,45 (8,5-10,0, n=16) 9,2 ± 0,50	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1) 2,7 ± 0,21 (2,3-3,2, n=23) 2,8 ± 0,19 2,8 ± 0,19 2,8 ± 0,30	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) (3,6-4,4, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,39 (2,9-4,3, n=16) 3,8 ± 0,45	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1) 2,9 ± 0,33 (2,4-3,5, n=23) 2,8 ± 0,27 (2,4-3,3, n=16) 3,1 ± 0,36
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 OTU 16 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6 OTU 7+9 OTU 12+14	7.5 ± 0.41 $(7.0-8.0, n=4)$ 8.0 ± 0.50 $(7.5-8.5, n=3)$ $(7.5-8.5, n=2)$ $(7.0-7.0, n=2)$ 7.7 ± 0.46 $(7.0-8.0, n=8)$ 48.1 ± 0.55 $(7.5-9.0, n=9)$ 9.0 $(n=1)$ 7.1 ± 0.48 $(6.5-8.0, n=7)$ 8.0 $(n=1)$ 7.8 ± 0.29 $(7.5-8.0, n=3)$ 7.5 $(n=1)$ 7.4 ± 0.60 $(5.5-8.0, n=23)$ 7.3 ± 0.32 $(7.0-8.0, n=16)$ 47.5 ± 0.41 $(7.0-8.0, n=17)$	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n}=4) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n}=3) \\ (25,5\text{-}26,0,\text{n}=2) \\ (25,0\text{-}25,5,\text{n}=2) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n}=8) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n}=9) \\ 31,0 \\ (\text{n}=1) \\ \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n}=7) \\ 27,0 \\ (\text{n}=1) \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n}=3) \\ 25,5 \\ (\text{n}=1) \\ 25,0 \pm 0,75 \\ (23,5\text{-}26,5,\text{n}=23) \\ 25,1 \pm 0,65 \\ (23,5\text{-}26,0,\text{n}=16) \\ 25,3 \pm 0,69 \\ (24,5\text{-}27,0,\text{n}=17) \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ 13,2\pm0,49\\ (12,5-14,0,n=23)\\ 13,3\pm0,36\\ (13,0-14,0,n=16)\\ 13,3\pm0,59\\ (12,5-14,5,n=17)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5 (n=1) 9,0 ± 0,45 (8,5-10,0, n=23) 9,0 ± 0,55 (8,0-10,0, n=16) 9,2 ± 0,50 (8,5-10,0, n=17)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1) 2,7 ± 0,21 (2,3-3,2, n=23) 2,8 ± 0,19 (2,5-3,2, n=16) 2,9 ± 0,30 (2,3-3,4, n=17)	Fint 4.2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,37 (3,0-4,4, n=16) 3,8 ± 0,45 (2,8-4,5, n=17)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1) 2,9 ± 0,33 (2,4-3,5, n=23) 2,8 ± 0,27 (2,4-3,3, n=16) 3,1 ± 0,36 (2,4-3,9, n=17)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+1: OTU 16 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6 OTU 6 OTU 7+9	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,5, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3) 7,5 (n=1) 7,4 ± 0,60 (5,5-8,0, n=23) 7,3 ± 0,32 (7,0-8,0, n=16) 47,5 ± 0,41 (7,0-8,0, n=17) 8,8 ± 0,29 ; 9,0	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n}=4) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n}=3) \\ (25,5\text{-}26,0,\text{n}=2) \\ (25,0\text{-}25,5,\text{n}=2) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n}=8) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n}=9) \\ 31,0 \\ (\text{n}=1) \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n}=7) \\ 27,0 \\ (\text{n}=1) \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n}=3) \\ 25,5 \\ (\text{n}=1) \\ 25,0 \pm 0,75 \\ (23,5\text{-}26,5,\text{n}=23) \\ 25,1 \pm 0,65 \\ (23,5\text{-}26,0,\text{n}=16) \\ 25,3 \pm 0,69 \\ (24,5\text{-}27,0,\text{n}=17) \\ 30,0 \pm 0,82 ; \textbf{30,0} \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ 13,2\pm0,49\\ (12,5-14,0,n=23)\\ 13,3\pm0,36\\ (13,0-14,0,n=16)\\ 13,3\pm0,59\\ (12,5-14,5,n=17)\\ 15,1\pm0,48;15,5\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5 (n=1) 9,0 ± 0,45 (8,5-10,0, n=23) 9,0 ± 0,55 (8,0-10,0, n=16) 9,2 ± 0,50 (8,5-10,0, n=17) 10,8 ± 0,29; 11,0	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1) 2,7 ± 0,21 (2,3-3,2, n=23) 2,8 ± 0,19 (2,5-3,2, n=16) 2,8 ± 0,39 (2,3-3,4, n=17) 4,2 ± 0,17; 4,4	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,37 (2,9-4,3, n=16) 3,8 ± 0,45 (2,8-4,5, n=17) 5,2 ± 0,38; 5,5	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1) 2,9 ± 0,36 (2,4-3,5, n=23) 2,8 ± 0,27 (2,4-3,3, n=16) 3,1 ± 0,36 (2,4-3,3, n=16) 3,1 ± 0,36 (2,4-3,9, n=17) 3,6 ± 0,31; 3,9
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 OTU 16 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6 OTU 7+9 OTU 12+14 OTU 15	7.5 ± 0.41 (7.0-8.0, n=4) 8.0 ± 0.50 (7.5-8.5, n=3) (7.5-8.5, n=2) (7.5-8.0, n=2) (7.0-8.0, n=8) 48.1 ± 0.55 (7.0-8.0, n=9) 9.0 (n=1) 7.1 ± 0.48 (6.5-8.0, n=7) 8.0 (n=1) 7.8 ± 0.29 (7.5-8.0, n=3) 7.5 (n=1) 7.4 ± 0.60 (5.5-8.0, n=23) 7.5 (7.0-8.0, n=16) 47.5 ± 0.41 (7.0-8.0, n=16) 47.5 ± 0.41 (7.0-8.0, n=17) $8.8 \pm 0.29 = 9.0$ (8.5-9.0, n=4)	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5-26,0,n=4) \\ 26,7 \pm 1,15 \\ (26,0-28,0,n=3) \\ (25,5-26,0,n=2) \\ (25,0-25,5,n=2) \\ 25,9 \pm 0,78 \\ (24,5-27,0,n=8) \\ 25,6 \pm 0,95 \\ (24,0-27,0,n=9) \\ 31,0 \\ (n=1) \\ \\ \hline \\ 25,2 \pm 0,81 \\ (24,5-26,5,n=7) \\ 27,0 \\ (n=1) \\ \hline \\ 26,0 \pm 0,00 \\ (26,0-26,0,n=3) \\ 25,5 \\ (n=1) \\ 25,0 \pm 0,75 \\ (23,5-26,5,n=23) \\ 25,1 \pm 0,65 \\ (23,5-26,0,n=16) \\ 25,3 \pm 0,69 \\ (24,5-27,0,n=17) \\ 30,0 \pm 0,82 \ ; \ \textbf{30,0} \\ (29,0-31,0,n=4) \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ 13,2\pm0,49\\ (12,5-14,0,n=23)\\ 13,0\\ (n=1)\\ 13,2\pm0,49\\ (12,5-14,0,n=16)\\ 13,3\pm0,36\\ (13,0-14,0,n=16)\\ 13,3\pm0,36\\ (13,0-14,0,n=16)\\ 13,3\pm0,36\\ (12,5-14,5,n=17)\\ 15,1\pm0,48;15,5\\ (14,5-15,5,n=4)\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5 (n=1) 9,0 ± 0,45 (8,5-10,0, n=23) 9,0 ± 0,55 (8,5-10,0, n=16) 9,2 ± 0,50 (8,5-10,0, n=17) 10,8 ± 0,29; 11,0 (10,5-11,0, n=4)	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1) 2,7 ± 0,21 (2,3-3,2, n=23) 2,8 ± 0,19 (2,5-3,2, n=16) 2,8 ± 0,30 (2,3-3,4, n=17) 4,2 ± 0,17; 4,4 (4,0-4,4, n=4)	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,4 (n=1) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,39 (2,9-4,3, n=16) 3,8 ± 0,45 (2,8-4,5, n=17) 5,2 ± 0,38; 5,5 (4,9-5,6, n=4)	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1) 2,9 ± 0,33 (2,4-3,5, n=23) 2,8 ± 0,27 (2,4-3,3, n=16) 3,1 ± 0,36 (2,4-3,9, n=17) 3,6 ± 0,31; 3,9 (3,2-3,9, n=4)
OTU 2 OTU 3 OTU 5 OTU 9 OTU 11 OTU 12+14 OTU 16 Femelle OTU 2 OTU 3 OTU 4 OTU 5 OTU 6 OTU 7+9 OTU 12+14	7,5 ± 0,41 (7,0-8,0, n=4) 8,0 ± 0,50 (7,5-8,5, n=3) (7,5-8,5, n=2) (7,0-7,0, n=2) 7,7 ± 0,46 (7,0-8,0, n=8) 48,1 ± 0,55 (7,5-9,0, n=9) 9,0 (n=1) 7,1 ± 0,48 (6,5-8,0, n=7) 8,0 (n=1) 7,8 ± 0,29 (7,5-8,0, n=3) 7,5 (n=1) 7,4 ± 0,60 (5,5-8,0, n=23) 7,3 ± 0,32 (7,0-8,0, n=16) 47,5 ± 0,41 (7,0-8,0, n=17) 8,8 ± 0,29 ; 9,0	$\begin{array}{c} 25,9 \pm 0,25 \\ (25,5\text{-}26,0,\text{n}=4) \\ 26,7 \pm 1,15 \\ (26,0\text{-}28,0,\text{n}=3) \\ (25,5\text{-}26,0,\text{n}=2) \\ (25,0\text{-}25,5,\text{n}=2) \\ 25,9 \pm 0,78 \\ (24,5\text{-}27,0,\text{n}=8) \\ 25,6 \pm 0,95 \\ (24,0\text{-}27,0,\text{n}=9) \\ 31,0 \\ (\text{n}=1) \\ \hline \\ 25,2 \pm 0,81 \\ (24,5\text{-}26,5,\text{n}=7) \\ 27,0 \\ (\text{n}=1) \\ 26,0 \pm 0,00 \\ (26,0\text{-}26,0,\text{n}=3) \\ 25,5 \\ (\text{n}=1) \\ 25,0 \pm 0,75 \\ (23,5\text{-}26,5,\text{n}=23) \\ 25,1 \pm 0,65 \\ (23,5\text{-}26,0,\text{n}=16) \\ 25,3 \pm 0,69 \\ (24,5\text{-}27,0,\text{n}=17) \\ 30,0 \pm 0,82 ; \textbf{30,0} \end{array}$	$\begin{array}{c} 14,0\pm0,00\\ (14,0-14,0,n=4)\\ 13,7\pm0,58\\ (13,0-14,0,n=2)\\ (13,5-14,0,n=2)\\ (13,5-13,5,n=2)\\ 14,1\pm0,64\\ (13,0-15,0,n=8)\\ 14,1\pm0,39\\ (13,5-14,5,n=9)\\ 16,0\\ (n=1)\\ \hline \\ 13,4\pm0,56\\ (12,5-14,0,n=7)\\ 15,0\\ (n=1)\\ 13,3\pm0,58\\ (13,0-14,0,n=3)\\ 13,0\\ (n=1)\\ 13,2\pm0,49\\ (12,5-14,0,n=23)\\ 13,3\pm0,36\\ (13,0-14,0,n=16)\\ 13,3\pm0,59\\ (12,5-14,5,n=17)\\ 15,1\pm0,48;15,5\\ \end{array}$	9,6 ± 0,48 (9,0-10,0, n=4) 9,7 ± 0,29 (9,5-10,0, n=3) (9,5-9,5, n=2) (9,0-9,0, n=2) 9,6 ± 0,44 (9,0-10,0, n=8) 9,7 ± 0,56 (9,0-10,5, n=9) 10,5 (n=1) 8,8 ± 0,49 (8,0-9,5, n=7) 9,5 (n=1) 9,3 ± 0,58 (9,0-10,0, n=3) 9,5 (n=1) 9,0 ± 0,45 (8,5-10,0, n=23) 9,0 ± 0,55 (8,0-10,0, n=16) 9,2 ± 0,50 (8,5-10,0, n=17) 10,8 ± 0,29; 11,0	Fext 3,2 ± 0,69 (2,3-3,8, n=4) 2,9 ± 0,21 (2,7-3,1, n=3) (2,7-3,1, n=2) (2,5-2,9, n=2) 3,1 ± 0,35 (2,6-3,5, n=8) 3,0 ± 0,51 (2,5-4,1, n=9) 3,7 (n=1) 2,9 ± 0,30 (2,3-3,3, n=7) 3,7 (n=1) (3,1-3,3, n=2) 2,3 (n=1) 2,7 ± 0,21 (2,3-3,2, n=23) 2,8 ± 0,19 (2,5-3,2, n=16) 2,8 ± 0,39 (2,3-3,4, n=17) 4,2 ± 0,17; 4,4	Fint 4,2 ± 0,42 (3,7-4,6, n=4) 4,1 ± 0,60 (3,5-4,7, n=3) (3,6-4,1, n=2) 4,2 ± 0,32 (3,7-4,6, n=8) 4,2 ± 0,40 (3,5-4,8, n=9) 4,8 (n=1) 3,8 ± 0,38 (3,2-4,3, n=7) 4,3 (n=1) (3,6-4,1, n=2) 3,4 (n=1) (3,6-4,1, n=2) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,37 (3,0-4,4, n=23) 3,7 ± 0,37 (2,9-4,3, n=16) 3,8 ± 0,45 (2,8-4,5, n=17) 5,2 ± 0,38; 5,5	Finf 3,3 ± 0,15 (3,2-3,5, n=4) 3,3 ± 0,15 (3,1-3,4, n=3) (2,4-2,6, n=2) (3,3-3,6, n=2) 3,1 ± 0,35 (2,7-3,6, n=7) 3,4 ± 0,35 (2,9-3,8, n=9) 3,2 (n=1) 3,1 ± 0,23 (2,7-3,3, n=7) 3,4 (n=1) 3,2 ± 0,26 (3,0-3,5, n=3) 2,9 (n=1) 2,9 ± 0,33 (2,4-3,5, n=23) 2,8 ± 0,27 (2,4-3,3, n=16) 3,1 ± 0,36 (2,4-3,3, n=16) 3,1 ± 0,36 (2,4-3,3, n=16) 3,1 ± 0,36 (2,4-3,3, n=17) 3,6 ± 0,31; 3,9