Colletotrichum species on Orchidaceae in southwest China

Youlian YANG a, b, Lei CAI c, Ziniu YU d, Zuoyi LIU a* & Kevin D. HYDE e,f

^a Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006, People's Republic of China. E-mail: liuzuoyi@yahoo.com.cn

^b Department of Life Science, Liupanshui Normal College, Shuicheng, Guizhou 553006, People's Republic of China. E-mail: yangyoulian@hotmail.com

^c Key Laboratory of Systematic Mycology & Lichenology, Institute of Microbiology, Chinese Academy of Sciences, No.10, North 4th Ring Road West, Beijing 100190, People's Republic of China. E-mail: mrcailei@gmail.com

^d College of Life Science & Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China. E-mail: yz41@mail.hzau.edu.cn

^e School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand

f Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia. E-mail: kdhyde3@gmail.com

Abstract – Twenty-two strains of *Colletotrichum*, representing eight species, were isolated from eight genera of *Orchidaceae* in Yunnan and Guizhou provinces in China. Fourteen strains were from lesions and are pathogens, four were from fallen/dead flowers or stems and four were isolated as endophytes. The strains are characterized through morphological studies and multilocus phylogenetic analysis (ACT, Tub 2, CAL, CHS I, GPDH and ITS). *Colletotrichum orchidearum* and the new species *Colletotrichum karstii* are described and illustrated, based on morphological characters and multilocus sequence data. Collections of the other *Colletotrichum* species are reported with notes.

Anthracnose / multilocus phylogeny / systematics / pathogenicity

INTRODUCTION

Orchidaceae is one of the largest plant families of the flowering plants (Angiospermae), containing an estimated 25,000 species (Jones, 2006). Many of the taxa are economically important ornamental plants, with more than 100,000 hybrids and cultivars produced to meet market demands for their showy flowers (http://en.wikipedia.org/wiki/Orchidaceae).

Anthracnose disease of *Orchidaceae* is a common problem worldwide (Li, 1999; Moriwaki *et al.*, 2003; Talubnak & Soytong 2010). The primary anthracnose disease fungi have been reported as *Colletotrichum boninense*

^{*} Correspondence and reprints: liuzuoyi@yahoo.com.cn

Moriwaki, Toy. Sato & Tsukib., C. crassipes (Speg.) Arx, C. crossandrae Patel, Kamat & C.B. Pande, C. gloeosporioides (Penz.) Penz. & Sacc. (Glomerella cingulata), C. lujae Verpl. & Clem. C. orchidearum Allesch. (including its 13 forms and varieties), C. stanhopeae Henn. and C. vanillae Scalia (Allescher et al., 1902; Patel et al., 1953; von Arx, 1957; Sutton, 1980; Moriwaki et al., 2003; Hyde et al., 2009; Farr & Rossman, 2011). These anthracnose agents cause brown to black spot on leaves, flowers or stalks of a wide range of orchid plants (Teoh, 2005). With the recent changes in the understanding of species concepts in Colletotrichum (e.g. Cai et al., 2009; Hyde et al., 2009; Prihastuti et al., 2009, 2010; Phouvilong et al., 2010; Wikee et al., 2011) it is not clear which species occur on orchid in China. The objective of this study was to characterize the species of Colletotrichum associated with lesions on flowers and leaves, plus four endophytes isolates from the roots of healthy Pleione bulbocodioides (Orchidaceae) in Guizhou and Yunnan provinces, China. In addition, the holotype of three forms, Colletotrichum orchidearum f. cymbidii Allesch., C. orchidearum f. eriae Allesch. and C. orchidearum f. physosiphonis Allesch. were investigated.

MATERIALS AND METHODS

Isolation of Colletotrichum from infected and healthy tissues

Leaves of Arundina, Calanthe, Cattleya, Cymbidium, Eria, Oncidium and Vanda (Orchidaceae) species with anthracnose lesions were collected in Guizhou and Yunnan provinces, China between June 2005 and October 2009 (Table 1). Colletotrichum associated with lesions and flowers were isolated via two methods depending on the status of fungal sporulation. Isolates were obtained from lesions without visible sporulation using the procedure described by Photita et al. (2005), while single-spore isolates from infected leaves or stems with sporulation were obtained using the procedure described by Choi et al. (1999). To obtain isolates from healthy roots of *Pleione bulbocodioides*, roots were cleaned in tap water, and dried with sterilized tissue paper. The samples were surface sterilized by dipping in 75% ethanol for 2-3 seconds, immersing in 0.1% mercuric chloride for 3-5 minutes and rinsing three times with sterilized water and finally drying on sterilized tissue paper. Dried roots were cut into about 1 cm segments, placed on potato dextrose agar (PDA), and then incubated at 25°C in darkness. The growing edges of any fungal hyphae developing from the segments were then transferred aseptically to PDA. The fungi were identified following sporulation. Single spore subcultures were obtained for each Colletotrichum isolate using the abovementioned method (Choi et al., 1999). Pure cultures were stored at 4°C on PDA slants. Isolates are deposited in Guizhou Academy of Agricultural Sciences, China, and China General Microbiological Culture Collection Center (CGMCC).

Morphological and cultural characterization

Starter cultures were prepared by growing each isolate on PDA at 25° C for 5 days. Five replicate cultures of each isolate were prepared by aseptically cutting actively growing areas near edge of starter culture using a sterile cork borer. Each plug was placed onto PDA plates (Petri dishes diameter: 90×15 mm) and grown in alternating 12 hours near UV/12 hours dark at 25° C (Sutton, 1980).

Colony diameter was measured at day six (for the fastest growing cultures, at day five). Growth rate was calculated as the 6-day or 5-day average of mean daily growth (mm per day). After 7-10 days, size and shape of 50 conidia harvested from the cultures were assessed. The colour of the conidial masses and zonation were recorded at day seven (Than *et al.*, 2008). Mycelial appressoria were produced and measured using a slide culture technique (Sutton, 1980). Conidial appressoria were also induced by placing conidia in two drops of distilled water (about $1.0 \times 10^{5-6}$ conidia/ml) on a microscope slide, then placing the slide inside a Petri dish containing cotton moistened with distilled sterile water, and incubated at 25°C in darkness. After incubating 24-72 hours, conidial appressoria formed from germ tubes and were characterized

DNA extraction and sequencing

DNA was extracted from the isolates growing on PDA at 25°C for 8-10 days using a modified protocol of Chen et al. (2007). The partial sequence of the actin (ACT), beta-tubulin (Tub2), calmodulin (CAL), chitin synthase 1 (CHS I), glyceraldehyde-3-phosphate dehydrogenase (GPDH) gene and 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS) were amplified and sequenced using the primer pairs ACT-512F/ACT-783R (Carbone & Kohn, 1999), T1/Bt-2b (O' Donnell & Cigelnik, 1997; Glass & Donaldson, 1995), CL1/CL2 (P. Johnston, personal communication), CHS-79F/CHS-354R (Carbone & Kohn, 1999), GDF1/GDR1 (Guerber et al., 2003), and ITS-1/ITS-4 (White et al., 1990), respectively. The PCR amplifications were performed in a 25 μl mixture containing 9.5μl ddH₂O, 12.5 μl 2×PCR Master Mix (TIANGEN Co. China), 1 µl of DNA template, 1 µl of each primer (10 µM). The reactions were performed with a thermal cycler (Mycler TM, Bio-Rad, Hercules, CA, USA) using the thermal program described by Yang et al. (2009). PCR products were sequenced using the above-mentioned PCR primers and ABI BigDye v3.1 terminator sequencing chemistry according to the manufacturer's instructions of a BigDye® Terminator v3.1Cycle sequencing kit (Applied Biosystems, CA, USA) in an Applied Biosystems 3730xl DNA Analyzers at Sinomax Co., China.

Molecular phylogenetic analysis

Phylogenetic analysis was performed using the six gene regions described above. The accession numbers of sequences generated are listed in Table 1. Multiple sequence alignments were generated using ClustalX 2.0.10 (Larkin *et al.*, 2007). Gaps were treated as missing data.

Each of the single and combined sequence alignments were analyzed using maximum parsimony (MP) in PAUP* 4.0b10. Ambiguously aligned regions were excluded from all analyses. Trees were inferred using the heuristic search option with tree bisection-reconnection (TBR) branch swapping and 1000 random sequence additions. Maxtrees were unlimited, branches of zero length were collapsed and all multiple parsimonious trees were saved. Clade stability of the trees resulting from the parsimony analyses were assessed by bootstrap analysis with 1000 replicates. Trees were figured in Treeview. When analyzing single and combined sequences, some reference sequences were obtained from GenBank (Table 1). Sequences sequenced in this study were submitted at GenBank, the alignment in TreeBASE (ID 10825) (http://www.treebase.org/treebase/index.html), and taxonomic novelties in MycoBank (Crous et al., 2004).

Table 1. Sources of isolates with GenBank accession numbers used in this study

Taxon	Specimen no.		GenBank no					— Host	Site	Reference
Tuxon		ITS	Tub2	CAL	CHS I	GPDH	ACT		Sue	Rejerence
Colletotrichum boninense	CORCS2	HM585400	HM585419	HM582005	HM582033	HM585385	HM582000	Pleione bulbocodioides	Liupanshui, Guizhou	This paper
	CORCX10	HM585401	HM585420	HM582006	HM582031	HM585384	HM581999	Oncidium flexuosum	Jinghong, Yunnan	This paper
	¹ MAFF305972	HM585399	HM585421	HM582004	HM582032	HM585386	HM582001	Crinum asiaticum var. sinicum	Japan	This paper
	CSSN1	GQ485597	GQ849437	GQ849462	GQ856728	GQ856743	GQ856774	Crinum asiaticum	China	Yang et al., 2009
	CSSX8	GQ485596	GQ849433	GQ849460	GQ856727	GQ856742	GQ856771	Crinum asiaticum	China	Yang et al., 2009
C. cliviae	CORCG2	HM585397	HM585422	HM582007	HM582024	HM585380	HM581985	Cymbidium hookerianum	Guiyang, Guizhou	This paper
	CORCX9	HM585398	HM585423	HM582008	HM582025	HM585381	HM581986	Arundina graminifolia	Jinghong, Yunnan	This paper
	¹ CSSK4/CBS125375	GQ485607	GQ849440	GQ849464	GQ856722	GQ856756	GQ856777	Clivia miniata	China	Yang et al., 2009
	CSSS2	GU109480	GU085870	GU085864	GU085866	GU085868	GU085862	Clivia miniata	China	Yang et al., 2009
C. crassipes	CORCS3	HM585410	HM585412	HM582002	HM582035	HM585379	HM581987	P. bulbocodioides	Liupanshui, Guizhou	This paper
	STU-U4445	AY376530	AY376578					Dryandra sp.	Madeira	Lubbe et al., 2004
	STE-U5302	AY376529	AY376577					Dryas octopetala	Switzerland	Lubbe et al., 2004
C. fructicola	CSSX7	GQ485604	GQ849435	GQ849459	GQ856734	GQ856760	GQ856770	Crinum asiaticum	China	Yang et al., 2009
	¹ MFLU090228	FJ972603	FJ907441	FJ917508		FJ972578	FJ907426	Coffea arabica	Thailand	Prihastuti et al., 2009

Table 1. Sources of isolates with GenBank accession numbers used in this study (continued)

Taxon	Specimen no.	GenBank no					– Host	Site	Reference		
1 axon	эрестеп по.	ITS	Tub2	CAL	CHS I	GPDH	ACT	- 110st	Sue	перетение	
C. gloeosporioides	CORCG4	HM034808	HM034810	HM034802	HM034804	HM034806	HM034800	Vanda sp., leaf	Luodian, Guizhou	This paper	
	CORCG5	HM034809	HM034811	HM034803	HM034805	HM034807	HM034801	Vanda sp., leaf	Luodian, Guizhou	This paper	
	¹ CBS953.97	GQ485605	GQ849434	GQ849452	GQ856733	GQ856762	GQ856782	Citrus sinensis	Italy	Yang et al., 2009	
C. hippeastri	CSSG1/CBS125376	GQ485599	GQ849446	GQ849469	GQ856725	GQ856764	GQ856788	Hippeastrum vittatum	China	Yang et al., 2009	
	CSSG2/CBS125377	GQ485598	GQ849445	GQ849470	GQ856726	GQ856765	GQ856789	Hippeastrum vittatum	China	Yang et al., 2009	
C. hymenocallidis	¹ CSSN2/CBS125378	GQ485600	GQ849438	GQ849463	GQ856730	GQ856757	GQ856775	Hymenocallis americana	China	Yang et al., 2009	
	CSSN3/CBS125379	GQ485601	GQ849439	GQ849451	GQ856729	GQ856759	GQ856776	Hymenocallis americana	China	Yang et al., 2009	
C. karstii	¹ CORCG6(CGMCC3.14194)	HM585409	HM585428	HM582013	HM582023	HM585391	HM581995	Vanda sp.	Luodian, Guizhou	This paper	
	CORCK1	HM585406	HM585424	HM582010	HM582019	HM585387	HM581991	Calanthe argenteo-striata	Kunming, Yunnan	This paper	
	CORCK3	HM585407	HM585427	HM582011	HM582020	HM585388	HM581992	Eria coronaria	Kunming, Yunnan	This paper	
	CORCS4	HM585405	HM585426	HM582012	HM582022	HM585390	HM581994	P. bulbocodioides	Liupanshui, Guizhou	This paper	
	CORCX7	HM585408	HM585425	HM582009	HM582021	HM585389	HM581993	A. graminifolia.	Jinghong, Yunnan	This paper	
l. liriopes	CORCK2	HM585396	HM585414	HM582018	HM582029	HM585382	HM581988	E. coronaria	Kunming, Yunnan	This paper	
	CORCS1	HM585395	HM585415	HM582017	HM582030	HM585383	HM581989	P. bulbocodioides	Liupanshui, Guizhou	This paper	

Table 1. Sources of isolates with GenBank accession numbers used in this study (continued)

Taxon	Specimen no.	GenBank no						— Host	Site	Reference
Тихоп	зрестен но.	ITS	Tub2	CAL	CHS I	GPDH	ACT		sue	10,0,0,00
	¹ CBS 119444	GÚ227804	GU228098		GU228294	GU228196	GU227903	Lirope muscari	Mexico	Damm et al., 2009
	CBS 122747	GU227805	GU228099		GU228295	GU228197	GU227904	Lirope muscari	Mexico	Damm et al., 2009
C. lupini	BBA 70385	AJ301935						Lupinus angustifolius	Germany	Nirenberg et al., 2002
	BBA 63879	AJ301930				*		Lupinus mutabilis	Germany	Nirenberg et al., 2002
C. orchidearum	CORCG3	HM585402	HM585418	HM582014	HM582026	HM585392	HM581996	Cymbidium hookerianum	Guiyang, Guizhou	This paper
	² CORCX1							Cattleya sp.	Jinghong, Yunnan	This paper
	² CORCX2							Cattleya sp.	Jinghong, Yunnan	This paper
	² CORCX3							Cattleya sp.	Jinghong, Yunnan	This paper
	² CORCX5							Cattleya sp.	Jinghong, Yunnan	This paper
	¹ CORCX6(CGMCC3.14195)	HM585403	HM585416	HM582015	HM582027	HM585393	HM581997	Cattleya sp.	Jinghong, Yunnan	This paper
	CORCX11	HM585404	HM585417	HM582016	HM582028	HM585394	HM581998	O. flexuosum	Jinghong, Yunnan	This paper
C. siamense	COGCX8	HM585411	HM585413	HM582003	HM582034	HM585378	HM581990	A. graminifolia	Jinghong, Yunnan	This paper
	CSST1	GQ485602	GQ849441	GQ849467	GQ856731	GQ856758	GQ856778	Hymenocallis sp.	Thailand	Yang et al., 2009
	CSST4	GQ485603	GQ849443	GQ849465	GQ856732	GQ856761	GQ856780	Hymenocallis sp.	Thailand	Yang et al., 2009

Table 1. Sources of isolates with GenBank accession numbers used in this study (continued)

Taxon	Specimen no.			Gen.	Bank no		— Host	Site	Defense	
Tuxon	ъресипен по.	ITS	Tub2	CAL	CHS I	GPDH	ACT	— Host	sue	Reference
	¹ MFLU090230	FJ 972613	FJ 907438	FJ 917505		FJ 972575	FJ 907423	Coffea arabica	Thailand	Prihastuti et al., 2009
C. simmondsii	¹ BRIP28519	GQ485606	GQ849430	GQ849454	GQ856735	GQ856763	GQ856784	Carica papaya	Australia	Yang et al., 2009
C. spaethianum	CSSX3	GQ485584	GQ849432	GQ849456	GQ856719	GQ856745	GQ856767	Hymenocallis americana	China	Yang et al., 2009
	CSSX5	GQ485586	GQ849426	GQ849448	GQ856718	GQ856747	GQ856769	Hymenocallis americana	China	Yang et al., 2009
C. tofieldiae	CBS495.85	GU227801		*	GU228291	GU228193	GU227899	Tofieldia calyculata	Switzerland	Damm et al., 2009
	IMI288810	GU227803			GU228293	GU228195	GU227901	Dianthus sp.	UK	Damm et al., 2009
C. trichellum	HKUCC10378	GQ485589	GQ849447	GQ849466	GQ856724	GQ856749	GQ856786	Unknown	Unknown	Yang et al., 2009
C. truncatum	CSSX2	GQ485595	GQ849424	GQ849457	GQ856736	GQ856750	GQ856766	Crinum asiaticum	China	Yang et al., 2009
	CBS120709	GQ485593	GQ849429	GQ849453	GQ856739	GQ856753	GQ856783	Capsicum frutescens	India	Yang et al., 2009
C. verruculosum	¹ IMI 4552	GU227806			GU228296	GU228198	GU227904	Crotalaria juncea	Zimbabwe	Damm et al., 2009
Fusarium oxysporum	ATCC-MYA-3970	FJ614650						Unknown	USA	Unpublished

Note: ATCC, American Type culture collection; BRIP, Queensland Department of Primary Industries Plant Pathology Herbarium; CBS, Culture collection of the Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Utrecht, The Netherlands; CGMCC, China General Microbiological Culture Collection Center; HKUCC, The University of Hong Kong Culture Collection; IMI, Culture collection of CABI Europe UK Centre, Egham, UK; MFLU, Mae Fah Luang University, Thailand; STE-U, Culture collection of the Department of Plant Pathology, University of Stellenbosch, South Africa. ¹ ex-type or ex-epitype cultures; ² strains not sequenced. The isolated strains and newly generated sequence are shown in bold.

Table 2. Synopsis of characters of Colletotrichum species from Orchidaceae in China

Taxon	Conidia shape and size on PDA (µm)	Conidial appressoria shape and size (µm)	Mycelial appressoria shape and size (μm)	Ascospore shape and size (μm)	Colony characteristics on PDA	Mycelial growth rate(mm per day)	Life mode
C. boninense (2 isolates)	Cylindrical, straight, hilum-like base, 12.5-18 × 6-8.5, $\bar{x} = 15.2 \pm 1.2 \times 7.1 \pm 0.6$, n = 100	Clavate to irregular, margin crenate, brown, 7.5-11 × 5-9, $\bar{x} = 9.4 \pm 1.2 \times 7.3 \pm 1.2$, n = 40	No data	Did not produce	White aerial mycelia; reverse reddish orange.		Pathogen
C. cliviae (2 isolates)	Cylindrical, straight, obtuse at the ends, 14-20.5 \times 5-6, \bar{x} = 17.6 \pm 1.2 \times 5.4 \pm 0.3, n = 50	Irregular, margin crenate to lobed, dark brown, 7.5-11.5 \times 6.5-9, $\bar{x} = 9.7 \pm 1.4 \times 7.4 \pm 0.6$, $n = 20$	Irregular, crenate or lobed, brown, 9.5-15.5 \times 6.5-10.5, $\bar{x} = 12.4 \pm 2.8 \times 7.7 \pm 1.8, n = 5$	Falcate, fusiform, tapered towards ends. 12.5-21.5 \times 5-7.5, \bar{x} = 16.7 \pm 2.2 \times 6 \pm 0.7, n = 100	White to grey, reverse brown to black.	13-14.8, $\bar{x} = 14 \pm 0.6$, n = 10	Pathogen
C. crassipes (1 isolate)	Cylindrical, straight, obtuse at apex, truncate at base, 14.5-18.5 \times 5.5-6.5, $\bar{x} = 15.6 \pm 0.9 \times 5.9 \pm 0.3$, $n = 50$	Clavate to irregular, margin crenate, brown, 6-9 × 5-7.5, \bar{x} = 7.9 ± 0.9 × 6.3 ± 0.6, n = 20	Clavate, margin entire to crenate, brown, 8.5-15.5 \times 6.5-8 \bar{x} = 11.9 \pm 2.9 \times 7.1 \pm 0.7, n = 5	Did not produce	White to grey mycelia; reverse, dark chocolate brown.		Endophyte
C. gloeosporioides (2 isolates)	Cylindrical, straight, obtuse at ends, 13-20.5(-23) \pm 4.5-6.5, $\bar{x} = 16.5 \pm 1.6 \times 5.4 \pm 0.4$, $n = 80$	Clavate to circular, margin entire, sepia brown, 6-10.5 \times 5-8.5 \bar{x} = 8.1 \pm 0.8 \times 6.5 \pm 0.6, n = 40	Clavate, margin entire or pale brown 8.5-13 \pm 6-7.5, $\bar{x}=10.5\pm1.7\times6.8\pm0.5$, $n=10$, Did not produce	Greyish white, reverse pale yellow to grey.	10.3-11.5, $\bar{x} = 10.8 \pm 0.4$, n = 10	Pathogen
C. karstii (5 isolates)	Cylindrical, straight, obtuse at apex, base truncate, 12-19.5 × (5-)6-7.5, $\bar{x} = 15.4 \pm 1.3 \times 6.5 \pm 0.5, n = 215$	Circular to clavate, margin entire, sepia brown, 6.5-14.5 \times 4-8.5, \bar{x} = 9.3 \pm 1.6 \times 6.4 \pm 0.9, n = 100	No data	Falcate, fusiform, 10.5-20 \times 4.5-6.5, \bar{x} =15.7 \pm 1.7×5.3 \pm 0.5, n = 60	White aerial mycelia; reverse reddish yellow.	8.3-11.4, $\bar{x} = 9.8 \pm 0.9$, n = 25	Pathogen Endophyte
C. liriopes (2 isolates)	Falcate, fusiform, $11-26 \times 2.5-4.5$ $\bar{x} = 17.7 \pm 5.2 \times 3.4 \pm 0.4$, n = 100	Clavate to irregular, margin crenate, sepia brown, $6.9-11.5 \times 4.5-8.5$ $\tilde{x}=8.6\pm1.1\times6.3\pm0.9$, $n=40$	Clavate to irregular, margin crenate to lobbed, sepia brown 6.5-15 \times 7-14, \bar{x} = 11.7 \pm 1.8 \times 8.2 \pm 1.3, n = 40	1	Grey, reverse dark brown to black.	8.4-12, $\bar{x} = 10.3 \pm 1.6$, n = 10	Pathogen Endophyte
C. orchidearum (7 isolates)	Cylindrical, straight, rounded at the ends. 15-23 × 5-6, $\bar{x} = 18.3 \pm 1.5 \times 5.4 \pm 0.3$, $n = 150$	Circular to irregular, margin entire to crenate, brown, 7-12 × 6.5-11, $\bar{x} = 10 \pm 1.2 \times 8.4 \pm 1.3$, n = 60	No data	Falcate, fusiform, $(15.5-)18-26 \times 4.5-7$, $\bar{x} = 21 \pm 2.4 \times 5.8 \pm 0.7$, $n = 60$	Pale grey to dark grey, reverse dark grey.	9.9-16.4 $\bar{x} = 14.2 \pm 2$, $n = 15$	Pathogen Saprotroph
C. siamense (1 isolates)	Fusiform to cylindrical, obtuse to slightly rounded ends, 13-16.5 \times 4.5-5, $\bar{x} = 15.3 \pm 0.9 \times 4.7 \pm 0.3$, $n = 50$	Ovoid, margin entire, medium brown, 6.5-8.5 \times 5.5-7, \bar{x} = 7.1 \pm 0.5 \times 5.9 \pm 0.4, n = 20	Ovate to clavate, margin entire, medium brown, $8\text{-}13\times5\text{-}7.5$, $\bar{x}=10.2\pm1.5\times6.6\pm0.8$, $n=10$	Did not produce	White, becoming pale grey with age, reverse pale yellowish to black.	,	Pathogen

		Infection rating $I(\%)$							
Taxon		C. karstii		C. orchidearum	C. siamense				
Strain	_	CORCG6	CORCS4	CORCX6	CORCX8				
Capsicum annuum, fruit	Wound/drop	100	0	0	100				
	Non wound/drop	0	0	0	0				
Clivia miniata ³ , leaf	Wound/drop	0	0	0	0				
	Non wound/drop	0	0	0	0				
Lycopersicon esculentum ³ , fruit	Wound/drop	66.7	66.7	66.7	100				
	Non wound/drop	0	0	0	66.7				
Malus pumila ³ , fruit	Wound/drop	88.9	22.2	56.7	100				
	Non wound/drop	0	0	0	0				

Table 3. Pathogenicity testing of Colletotrichum isolates from Orchidaceae

The model of evolution was estimated by using Mrmodeltest 2.2 (Nylander, 2004). Posterior probabilities (PP) (Rannala & Yang, 1996; Zhaxybayeva & Gogarten, 2002) were determined by Markov Chain Monte Carlo sampling (BMCMC) in MrBayes 3.0b4 (Huelsenbeck & Ronquist, 2001). Six simultaneous Markov chains were run for 1,000,000 generations and trees were sampled every 100th generations (resulting 10,000 total trees). The first 2,000 trees, which represented the burn-in phase of the analyses, were discarded and the remaining 8,000 trees were used for calculating posterior probabilities (PP) in the majority rule consensus tree.

Pathogenicity testing and host range

Four representative isolates from *Orchidaceae* were selected for pathogenicity testing (Table 3). Four plants were selected to test the host range (Table 3). These plants belong to 3 families, being host plants of *Colletotrichum* species that are morphologically similar to the isolates from *Orchidaceae*.

Single spore cultures of each isolate were grown on PDA for 7 days at 25°C. Spores were then harvested by adding 10 ml of sterilized distilled water onto the culture, which was then gently swirled to dislodge the conidia. The conidial suspension was filtered through two layers of muslin cloth and adjusted to 1×10^5 conidia/ml using a haemocytometer.

Healthy, freshly harvested, mature leaves or fruits were obtained and washed under running tap water for 60 seconds followed by surface sterilization by immersing the fruits or leaves in 70% ethanol for 3 minutes, 1% sodium hypochlorite solution for 3 minutes and then rinsing three times in sterilised distilled water for 2 minutes and drying with sterile tissue paper (Cai et al., 2009; Montri et al., 2009). The inoculation method has been described by Than et al. (2008). The wound/drop inoculation method involved pin pricking the leaf or fruit wall to about

¹ Infection rating = the number of infected fruits or leaves divided by the number of total inoculated fruits or leaves; $^2 = 11$ replicates; $^2 = 11$ replicates; $^2 = 11$ replicates; $^2 = 11$ replicates.

1 mm depth; the non wound inoculation without pricking, and then placing 6 μ l of conidia suspension (10⁵ conidia/ml) onto the wound/non wound. Control fruits and leaves were inoculated with 6 μ l of sterilized distilled water onto the wound/non wound. Each plant was inoculated with at least nine replicates per selected strain (Table 3). Inoculated leaves were kept individually in a glass bottle (350 ml, 12 height × 7 diameter cm) with 80 ml sterilized water and sealed with a fresh-keeping plastics bag. Inoculated fruits were placed individually in a plastic box (30 × 25 × 4 cm) with sterilized tissue paper containing sterilised distilled water to maintain approximately 95% relative humidity (Montri *et al.*, 2009). Boxes were covered with cling film and incubated at 25°C for 14 days. After 7 and 14 days, lesion development was assessed by estimating the percentage of disease on each fruit or leaf. Spore masses or acervuli on innoculated leaves or fruits were checked with a compound microscope and spores were transferred to PDA medium, and then incubated at 25°C for checking the colony and spore characters. All infected leaves or fruits were sterilized before disposal.

RESULTS

Collection of Colletotrichum species

Fourteen strains of *Colletotrichum* were isolated from anthracnose lesions or recently dead leaves of *Arundina*, *Calanthe*, *Cattleya*, *Cymbidium*, *Eria*, *Oncidium* and *Vanda* and four strains were isolated from flowers or stems of *Cattleya* sp. (Table 1). For comparison, four endophytic strains isolated from roots of *Pleione bulbocodioides* (*Orchidaceae*) and the ex-holotype of *Colletotrichum boninense* (MAFF 305972) were included in this study.

Phylogenetic analysis

The combined partial datasets of the six genes (ACT, CAL, CHS I, GPDH, ITS, Tub 2) of the *Colletotrichum* species from *Orchidaceae* plus datasets obtained from GenBank were comprised of 2797 characters after alignment, of which 1063 characters are parsimony-informative (38%), 1584 constant (56.6%), and 150 parsimony-uninformative (5.4%). Parsimony analysis generated two trees; KH test verified that two generated trees from parsimony analysis were similar, one of which (Tree length = 2653 steps) is shown in Figure 1.

The phylogram constructed using combined datasets showed that *Orchidaceae* isolates clustered into eight distinct clades with high bootstrap support (except in one case of 93%, all others are equal or above 99%), and Bayesian posterior probabilities (100%), thus presumably representing different *Colletotrichum* species.

Taxonomy

Based on DNA sequence data and morphological characteristics the 22 Orchidaceae isolates represent eight species of Colletotrichum (Tables 1, 2). Clade 1 represents an undescribed Colletotrichum species, Clade 2, 3, 4, 5, 6, 7 and 8 are C. boninense, C. cliviae Y.L. Yang, Zuo Y. Liu, K.D. Hyde & L. Cai, C. orchidearum, C. siamense Prihastuti, L. Cai & K.D. Hyde, C. gloeosporioides,

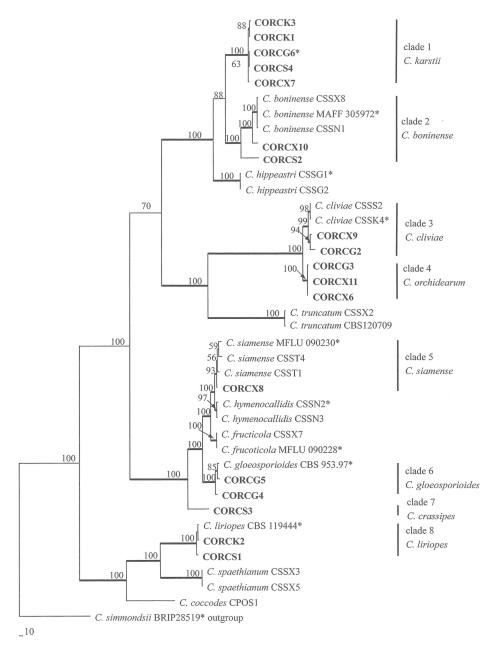


Fig. 1. Maximum parsimony phylograms inferred from combined partial ACT, Tub 2, CHS I, CAL, GPDH and ITS sequence data, showing phylogenetic relationships of *Colletotrichum* species isolated from *Orchidaceae* and selected sequences of *Colletotrichum* species (tree length = 2653 steps). Data analyzed with random addition sequence, unweighted parsimony and treating gaps as missing data. Values above the branches are parsimony bootstrap (equal or above 50%). The tree is rooted with *C. simmondsii* BRIP 28519). The thickened lines are Bayesian posterior probabilities (equal 100%). * ex-type or ex-epitype.

C. crassipes (Speg.) Arx and C. liriopes Damm, P. F. Cannon & Crous, respectively. Colletotrichum orchidearum and the new species are described and illustrated in this paper.

Colletotrichum boninense Moriwaki, Toy. Sato & Tsukib., Mycoscience 44: 48 (2003)

Material examined: CHINA, Yunnan Province, Jinghong, on leaf of Oncidium flexuosum, 3 August 2008, Y.L. Yang (GZAAS 080008, ex-living CORCX10); Guizhou Province, Shuicheng, endophyte from root of healthy Pleione bulbocodioides, 14 October 2004, Y.L. Yang (ex-living culture CORCS2).

Notes: This species was isolated as a pathogen and endophyte from orchids. Strain CORCX10 occurred on leaves of Oncidium flexuosum forming reddish brown, ellipsoid lesions with pale yellow conidial masses but rarely with setae. Strain CORCS2 was isolated as an endophyte from the roots of Pleione bulbocodioides. The conidia of strains CORCX10 and CORCS2 are much wider than those of ex-holotype and ex-paratype, but similar to those recorded on Amaryllidaceae (Yang et al., 2009). In the individual and combined datasets, strains CORCX10, CORCS2 and MAFF 305972 (ex-holotype of C. boninense) nested in Clade 2 with high bootstrap support (Clade 2, Fig. 1).

Colletotrichum cliviae Y.L. Yang, Zuo Y. Liu, K.D. Hyde & L. Cai, Fungal Diversity. 39: 133 (2009) Fig. 2

Teleomorph: Glomerella sp.

Ascomata clustered, black, globose to subglobose, on surface or semi-immersed to completely immersed in PDA after about one month. **Peridium** of *textura angularis*, thick-walled. **Asci** 60-82 × 9.5-14 µm (\bar{x} = 70.9 ± 8.3 × 11.7 ±1.1, n = 20), 8-spored, unitunicate, thin-walled, clavate (Figs 2D and G). **Ascospores** 12.5-21.5 × 5-7.5 µm (\bar{x} = 16.7 ± 2.2 × 6 ± 0.7, n = 100), one-celled, hyaline, slightly curved to curved with obtuse to slightly rounded ends (Fig. 2H).

Material examined: CHINA, Yunnan Province, Jinghong, on leaf of Arundina graminifolia, 3 August 2008, Y.L. Yang (GZAAS 080011, ex-living CORCX9); Guizhou Province, Shuicheng, on leaf of Cymbidium hookerianum, 8 September 2008, Y.L. Yang (GZAAS 080013, ex-living culture CORCG2).

Notes: This species produced dark brown to black, ellipsoid lesions on leaves of Cymbidium hookerianum and Arundina graminifolia and lesions contained pale yellow conidial masses. This species formed both conidia and ascospores in culture (Fig. 2F and H). The conidia of the orchid isolates are shorter than those of the holotype (14-20.5 vs 19.5-24.5), but otherwise they are similar (Fig. 2B, C, E, F). The holotype of C. cliviae did not produce a sexual state under the same incubation conditions (Yang et al., 2009), but the teleomorph was formed in the two isolates from Orchidaceae and is described here.

Colletotrichum crassipes (Speg.) Arx, Verh. K. Akad. Wet., tweede sect. 51(3): 77 (1957)

Material examined: CHINA, Guizhou Province, Shuicheng, in root of healthy *Pleione bulbocodioides*, 14 October 2004, Y.L. Yang. (ex-living culture CORCS3).

Notes: This species was isolated from healthy roots of *Pleione bulbocodioides*. The taxon has been also reported as a pathogen on the orchids, *Bulbophylum cylindrum*, *Coelogyne cristata* and *Oncidium* spp. (Sutton 1980). The conidia and appressoria of strain CORCS3 are similar to *Colletotrichum crassipes* (Sutton 1992) (Table 2), and this strain, together with STE-U 4445 and

STE-U5302 (*C. crassipes*), clustered into a single clade with 100% bootstrap support based on the Tub2 squence (not shown).

Colletotrichum gloeosporioides (Penz.) Penz. & Sacc., Atti Inst. Veneto Sci. lett., ed Arti, Sér. 6 2: 670 (1884)

Material examined: CHINA, Guizhou Province, Luodian, on leaf of Vanda sp., 15 August 2009, Y.L. Yang (GZAAS 090004, ex-living culture CORCG4; GZAAS 090005, ex-living culture CORCG5).

Notes: This taxon causes ellipsoid, pale grey spots with black margins on leaves of Vanda sp. (Fig. 5A). Acervuli are subepidermal, and disrupt the outer epidermal cell wall of the host forming pink conidial masses without setae (Fig. 5B). Colletotrichum gloeosporioides has been also reported to cause anthracnose on several other orchid plants in several countries (Talubnak & Soytong, 2010; Farr & Rossman, 2011) although these identifications were based on morphology and must be treated with caution (Table 4).

Colletotrichum karstii Y.L. Yang, Zuo Y. Liu, K.D. Hyde & L. Cai, sp. nov. Fig. 3 MycoBank: MB 518609

Etymology: Karstii meaning karst, named after the geological feature of site where the species was collected.

Coloniae albae vel griseo. Conidia 12-19.5 \times (5-) 6-8.5 μ m, aseptata, hyalina, cylindrica, recta, ad basim truncata, ad apicem **obtusa. Appressoris brunneis**, circularis **vel** clavatis, 6.5-14.5 \times 4-8.5 μ m. Asci 54-86 \times 11-16.5 μ m, unitunicati, tenuitunicati, clavati. Ascosporae 10.5-20 \times 4.5-6.5 μ m, unicellularae, hyalinae, leniter curvatae vel curvatae.

Description: On host: **Acervuli** circular to elliptical, arranged irregularly, subepidermal, disrupting outer epidermal cell wall of host, setae sparse or absent, with yellow conidial masses (Fig. 3A). **Setae** 46-104 × 5-7 μm (\bar{x} = 70.9 ± 19.2 × 6 ± 0.7, n = 7), dark brown, 4-8-septate, tapered towards the apex, base and apex paler (Fig. 3D). **Conidiophores** bell-shaped to cylindrical, hyaline, usually 1-celled, occasionally 2-3-celled, unbranched, 11-42 × 4-7.5 μm (\bar{x} = 19.6 ± 7.3 × 5.7 ± 0.9, n = 30) (Fig. 3H). **Conidia** 12.5-19.5×6-8.5 μm (\bar{x} = 15.9 ± 1.4 ×6.8 ± 0.5, n = 60), one-celled, smooth-walled, hyaline, straight, truncate at the base, obtuse at the apex.

Colonies on PDA: attaining 4.8-6.4 cm ($\bar{x} = 5.7 \pm 0.5$, n = 25) diam. in 6 days at 25°C, growth rate 8.3-11.4 mm per day ($\bar{x} = 9.8 \pm 0.9$, n = 25); flat with entire margin, at first white, becoming grey with age, usually with pink conidial masses, reverse yellow to dark brown (Fig. 3B, C), **Sclerotia** absent. **Setae** absent. **Conidia** in pink masses, 12-19.5 × (5-) 6-7.5 µm ($\bar{x} = 15.4 \pm 1.3 \times 6.5 \pm 0.5$, n = 215), one-celled, smooth-walled, hyaline, cylindrical, straight, truncate at the base, obtuse at the apex (Fig. 3I). **Appressoria** brown, circular to clavate, 6.5-14.5 × 4-8.5 µm ($\bar{x} = 9.3 \pm 1.6 \times 6.4 \pm 0.9$, n = 100) (Fig. 3E, F, G).

Teleomorph: Glomerella sp.

Ascomata dark brown, globose to subglobose, on surface or semi-immersed to completely immersed in PDA. **Peridium** of *textura angularis*, thickwalled. **Asci** 54-86 \times 11-16.5 μ m (\bar{x} = 71.2 \pm 9.2 \times 12.7 \pm 1.4, n = 20), unitunicate, thin-walled, 8-spored, clavate (Figs. 3J and K). **Ascospores** 10.5-20 \times 4.5-6.5 μ m, (\bar{x} =15.7 \pm 1.7 \times 5.3 \pm 0.5, n = 60), one-celled, hyaline, slightly curved to curved with obtuse to slightly rounded ends (Fig. 3L).

Holotype: CHINA, Guizhou Province, Luodian, on leaf of *Vanda* sp., 15 August 2009, Y.L. Yang (GZAAS 090006; ex-holotype living culture CGMCC3.14194).

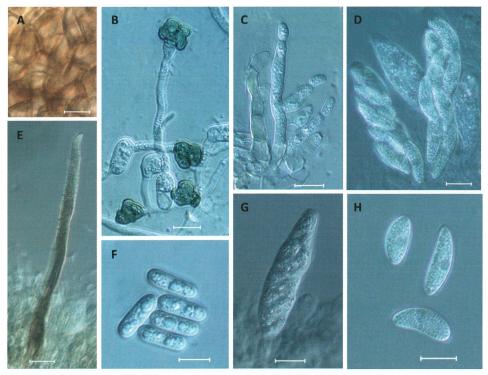


Fig. 2. Colletotrichum cliviae (from CORCX9). A, Squash of peridium; B, Conidial appressoria; C, Conidiophores; D, G, Asci; E, Seta; F, Conidia; H, Ascospores. (Bars: A-H = $10 \mu m$).

Known host and distribution: Arundina graminifolia, Calanthe argenteostriata, Eria coronaria, Pleione bulbocodioides and Vanda sp., Guizhou and Yunnan provinces, China.

Additional specimens examined: CHINA, Yunnan Province, Jinghong, on leaf of Arundina graminifolia, 1 August 2008, Y.L. Yang (GZAAS 080015, exliving culture CORCX7); Yunnan Province, Kunming, on leaf of Calanthe argenteo-striata and Eria Coronaria, 10 August 2008, Y.L. Yang (GZAAS 080016, ex-living cultures CORCK1, GZAAS 080028, ex-living cultures CORCK3); Guizhou Province, Shuicheng, in root of Pleione bulbocodioides, 12 October 2004, Y.L. Yang (ex-living culture CORCS4).

Notes: The conidia and conidial appressoria of *C. karstii* overlap in size with those of *C. boninense*, while their shapes are clearly different (Table 2). The conidial appressoria of *C. karstii* are circular to clavate with an entire edge (Fig. 3E, F, G), but in *C. boninense* they are clavate to irregular with a crenate edge; the base of the conidium also differs (*C. boninense*: hilum-like vs *C. karstii*: truncate). In phylograms inferred from single and combined gene datasets, *C. karstii* nested into a monophyletic lineage with high bootstrap (except in the ITS phylogram with 66% bootstrap support, all others were 97% or above). *Colletotrichum karstii* was compared with other *Colletotrichum* species with cylindrical conidia formed on hosts in *Orchidaceae*. The conidia of *C. karstii* are clearly wider than those of *C. orchidearum* and *C. stanhopeae* (Allescher *et al.*,

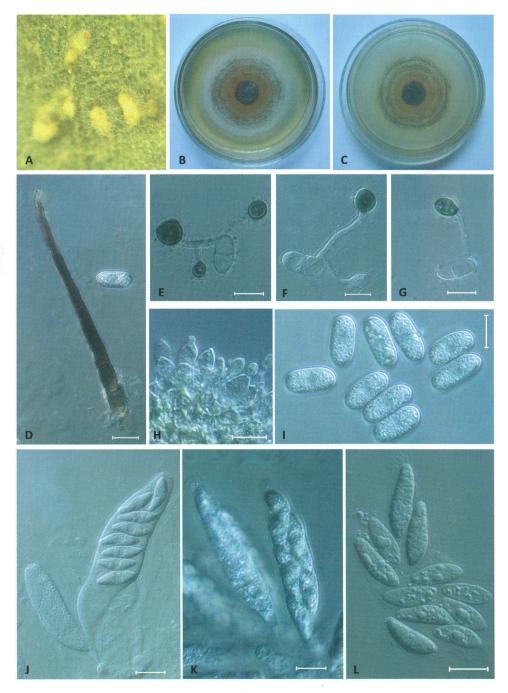


Fig. 3. *Colletotrichum karstii* (from holotype). A, Acervuli on leaf of *Vanda* sp.; B, C, Colony on PDA after 6 days, upper B and reverse C; D, Seta; E, F, G, Conidial appressoria; H, Conidiophores; I, Conidia; J, K, Asci; L, Ascospores. (Bars: D-L = $10 \, \mu m$).

1902; Saccardo et al., 1931). Although the conidia size of C. karstii overlaps with that of C. vanillae, their shapes are different. Conidia of C. karstii are truncate at the base and obtuse at the apex, while in C. vanillae the apex of the conidia are slightly wider than the base and rounded at ends (Saccardo & Saccardo, 1906).

Colletotrichum karstii was isolated from Orchidaceae as a pathogen (strains CORCK1, CORCK3, CORCX7, CORCG6) causing dark brown to black, ellipsoid lesions on leaves and was also isolated as an endophyte of roots (strain CORCS4). In addition, Colletotrichum karstii was isolated from grape (Vitis vinifera), chili (Capsicum spp.) and tomato (Lycopersicon esculentum) associated with anthracnose in China (unpublished data), this suggested this taxon have a wide range of hosts.

Colletotrichum liriopes Damm, P. F. Cannon & Crous, Fungal Diversity 39: 71 (2009)

Material examined: CHINA, Yunnan Province, Kunming, on leaf of Eria Coronaria, 10 August 2008, Y.L. Yang (GZAAS 080027, ex-living CORCK2); Guizhou Province, Shuicheng, endophyte of root of healthy Pleione bulbocodioides, 14 October 2004, Y.L. Yang (ex-living culture CORCS1).

Notes: Strain CORCK2 of this taxon is pathogenic on leaves of Eria coronaria causing ellipsoid, dark brown to black spots, containing pale yellow conidial masses, and with sparse setae. Strain CORCS1was isolated as an endophyte from the roots of Pleione bulbocodioides.

Colletotrichum orchidearum Allesch., Rabenh. Krypt.-Fl., Edn 2 (Leipzig) 1(7): 563 (1902) Fig. 4

On host: **Acervuli** circular to elliptical, dispersed or clustered, subepidermal, disrupting outer epidermal cell wall of host, with pale yellow conidial masses and dark brown setae (Fig. 4A). **Setae** 49.5-123.5 × 4.5-7 (\bar{x} = 77.2 ± 21.5 × 5.5 ± 0.7, n = 20), dark brown to black, 2-7-septate (Fig. 4B, C), base inflated. **Conidiophores** hyaline, usually with a pale pigment at the base, 1-celled, occasionally 2-celled, 13-27.5 × 4-7 µm (\bar{x} = 20.8 ± 4.8 × 5.8 ± 0.8, n = 20) (Figs. 4C and D). **Conidia** 13.5-22 × 4.5-6.5 µm (\bar{x} = 17.6 ± 1.7 × 5.7 ± 0.6, n = 60), one-celled, smooth-walled, hyaline, rounded at the ends.

Colonies on PDA: attaining 5.7-7.2 cm ($\bar{x}=6.8\pm4.8$, n = 15) diam. in 5 days at 25°C, growth rate 9.9-16.4 mm per day ($\bar{x}=14.2\pm2$, n = 15); flat with entire margin; at first white, becoming grey with age, reverse pale yellow to dark brown with age (Fig. 4E, F), **Sclerotia** absent. **Setae** present. **Conidiophores** hyaline, $10\text{-}47\times3.5\text{-}5.5$ µm ($\bar{x}=30.6\pm10.8\times4.5\pm0.5$, n = 10), branched at base or unbranched, 1-4-celled. **Conidia** in yellowish white masses, $15\text{-}23\times5\text{-}6$ µm ($\bar{x}=18.3\pm1.5\times5.4\pm0.3$, n = 150), one-celled, smooth-walled, hyaline, cylindrical, straight, rounded at the ends (Fig. 4G, H). **Appressoria** dark brown, circular to irregular, margin entire to crenate, $7\text{-}12\times6.5\text{-}11$ µm ($\bar{x}=10\pm1.2\times8.4\pm1.3$, n = 60) (Fig. 4I, J).

Teleomorph: Glomerella sp.

Ascomata on PDA, dark brown, globose to subglobose. **Peridium** of *textura angularis*, thick-walled (Fig. 4K). **Asci** 54.5-100.5 \times 9-13 μ m (\bar{x} = 77.9 \pm 12.5 \times 11.2 \pm 1.3, n = 20), unitunicate, thin-walled, 6-8-spored, clavate (Figures 4L, M). **Ascospores** (15.5-) 18-26 \times 4.5-7 μ m, (\bar{x} = 21 \pm 2.4 \times 5.8 \pm 0.7, n = 60), one-celled, hyaline, slightly curved to curved with obtuse to slightly rounded ends (Fig. 4N).

Specimens examined: CHINA, Yunnan Province, Jinghong, on leaf of Cattleya sp., 1 August 2008, Y.L. Yang (GZAAS 080023; ex-holotype living culture CGMCC3.14195). Yunnan Province, Jinghong, on falling, dry flower of Cattleya sp., 1 August 2008, Y.L. Yang (GZAAS 080021, exliving culture CORCX2); Yunnan Province, Jinghong, on dead scape of Cattleya sp., 1 August 2008, Y.L. Yang (GZAAS 080022, ex-living culture CORCX5); Yunnan Province, Jinghong, on leaf of Oncidium flexuosum, 1 August 2008, Y.L. Yang (GZAAS 080025, ex-living culture CORCX11); Guizhou Province, Guiyang, on leaf of Cymbidium hookerianum, 20 August 2008, Y.L. Yang (GZAAS 080029, ex-living culture CORCG3); GERMANY, on leaf of Cymbidium pendulum (M-0140830, holotype of Colletotrichum orchidearum f. cymbidii, 4, 1895, Allescher); on leaf of Eria stellata (M-0140831, holotype of C. orchidearum f. eriae), 4, 1895, Allescher; on leaf of Physosiphon loddigesii (M-0140832, holotype of C. orchidearum f. physosiphonis, 4, 1895, Allescher).

Notes: Allescher (1902) fist reported Colletotrichum orchidearum from Germany on leaves of Orchidearum exoticarum, C. orchidearum f. cymbidii on Cymbidium pendulum, and C. orchidearum f. eriae on Eria stellata. The holotype of Colletotrichum orchidearum appears to be lost. Fortunately, the three forms are held in M in Munich, Germany. The characters of conidia, setae and conidiophores in all three forms are similar (Table 4). This suggests that these form names are host related and may be a single species.

Colletotrichum orchidearum was isolated from dead scape, stem and fallen flower of Cattleya sp. and from leaves of Cymbidium hookerianum and Oncidium flexuosum with disease symptoms. This indicates that the taxon may also have a saprotrophic lifestyle. This species is in need of epitypification (Hyde et al., 2009), but we are reluctant to use the specimen isolated here as it is not from Europe, but it can act as a voucher specimen until the species is epitypified with a specimen from Europe.

Colletotrichum siamense Prihastuti, L. Cai & K.D. Hyde, Fungal Diversity 39: 98 (2009).

Material examined: CHINA, Yunnan Province, Jinghong, on leaf of Arundina graminifolia, 2 August 2008, Y.L. Yang (GZAAS 080024, ex-living culture CORCX8).

Notes: This taxon causes ellipsoid to linear, pale brown to dark brown lesions on leaves of Arundina graminifolia.

Pathogenicity testing and host range

Pathogenicity testing was carried out on fruits of apple, chilli, tomato and leaves of *Clivia miniata* using spore suspensions of four strains (Table 3). The new species and *Colletotrichum orchidearum* do not appear to be host-specific to orchids based on the pathogenicity testing (Table 3). Each strain tested infected 2-3 fruits by wound/drop or non wound/drop inoculation forming water-sunken spots or mycelia on surface of fruits (Fig. 6). The symptoms on the same species of fruit infected by the different *Colletotrichum* species were similar. Both pathogenic (CORCG6) and endophytic (CORCS4) strains of *Colletotrichum karstii* infected *Malus pumila* fruits; strain CORCG6 caused anthracnose on fruits of *Capsicum annuum* by wound/drop inoculation, but the endophytic strain (CORCS4) did not. *Colletotrichum orchidearum* (strain CORCX6) was able to infect fruits of *Lycopersicon esculentum* and *M*.

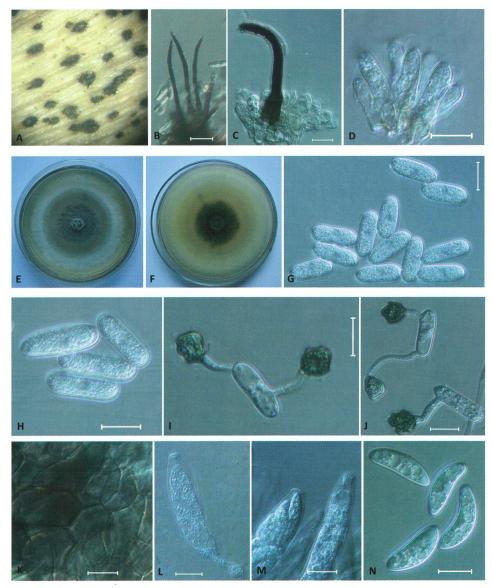


Fig. 4. Colletotrichum orchidearum (from CORCX6). A, Acervuli on leaf of Cattleya sp.; B, C. Setae; D, Conidiophores; E, F, Colony on PDA after 6 days, upper E and reverse F; G, H, Conidia; I, J, Conidial appressoria; K, Squash of peridium; L, M, Asci; N, Ascospores. (Bars: $B=20~\mu m, C, D, G-N=10~\mu m$).

pumila by wound/drop inoculation. C. siamense (strain CORCX8) was most aggressive, causing anthracnose on three kinds of fruits by wound/drop inoculation, and also infecting fruits of L. esculentum by non wound/drop inoculation.

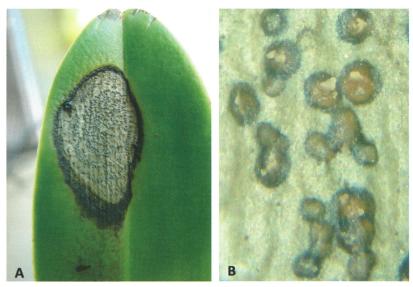


Fig. 5. Anthracnose symptoms and acervuli of *Colletotrichum gloeosporioides* on leaves of *Vanda* sp. A. Symptoms; B. Acervuli.

DISCUSSION

Colletotrichum species known from Orchidaceae

In this study we isolated eight species of *Colletotrichum*, of which *C. boninense*, *C. crassipes*, *C. gloeosporioides* and *C. orchidearum* have been previously recorded from orchids (Sutton, 1980; Li, 1999; Moriwaki *et al.*, 2003; Talubnak & Soytong, 2010). The other isolates belonged to *C. cliviae*, *C. liriopes*, *C. siamense* and a new species which is described above.

Thirteen forms/varieties of *Colletotrichum orchidearum* have previously been recorded on various orchids, namely, C. orchidearum f. cochliodae Verpl. & Claess., C. orchidearum f. coelogynes Marchal ?? & Verpl., C. orchidearum f. cymbidii Allesch., C. orchidearum f. Eriae Allesch., C. orchidearum f. lycaste Lebedeva., C. orchidearum f. odontoglossi Verpl. & Claess., C. orchidearum f. orchidearum Allesch., C. orchidearum f. physosiphonis Allesch., C. orchidearum f. stanhopeae Gutner., C. orchidearum var. cochliodes (Verpl. & Claess.) Trotter., C. orchidearum var. odontoglossi (Verpl. & Claess.) Trotter., C. orchidearum var. orchidearum Allesch. and C. orchidearum var. stanhopeae Gutner (Allescher et al., 1902; Saccardo & Saccardo, 1906, Saccardo et al., 1931; Trotter & Cash, 1972). These varieties or forms are based on host occurrence and would unlikely be supported as individual species, forms or varieties if molecular data could be applied. We therefore recommend the use of Colletotrichum orchidearum for all forms and varieties. Colletotrichum crossandrae Patel, Kamat & C.B. Pande, C. lujae. Verpl. & Clem., C. stanhopeae and C. vanillae Scalia have been also previously reported to infect Orchidaceae (Allescher et al., 1902; Patel et al., 1953; von Arx, 1957; Farr & Rossman, 2010) (Table 4), however, these names have not been used in the scientific literature over the past several decades (Sutton, 1980, 1992; Hyde et al., 2009). Furthermore, ex-type cultures of these species are not

Table 4. Synopsis of characters of Colletotrichum species known from Orchidaceae

Species	Conidial shape and size (µm)	Conidiophores (µm)	Setae (µm)	Host	Reference
C. boninense	On <i>Oncidium flexuosum</i> , cylindrical, straight, with a hilum-like base, $12-17 \times 5-7.5$, $\bar{x}=14.5\pm1.7\times6.8\pm0.7$, $n=30$	Cylindrical, hyaline, pale brown at base,1-2 cells, 12-26.5 × 4.5-7.5(-9), $\bar{x} = 21.3 \pm 3 \times 6.4 \pm 1.1$, $n = 10$	No setae present on Oncidium flexuosum	Cattleya sp., Cymbidium sp. Oncidium flexuosum, Pleione bulbocodioides, other hosts belonging to various families	This paper; Farr & Rossman, 2011
C. cliviae	On <i>Cymbidium hookerianum</i> , cylindrical, straight, obtuse at the ends, 16-22.5 × 4-6.5, $\bar{x} = 19.6 \pm 1.5 \times 5.4 \pm 0.4$, n = 30	Cylindrical, hyaline, branched, 1-3 cells, 15.5-52 × 3.5-6.5, \bar{x} = 27.1 ± 13 × 5 ± 0.8, n = 10	Brown, 2-5 septa, slightly inflated at base, 97.5-125.5 \times 5-8, \bar{x} = 110.7 \pm 9.7 \times 6.3 \pm 0.8, n = 10	Arundina graminifolia, Clivia miniata, Cymbidium hookerianum	This paper; Yang et al., 2009
C. crassipes	On culture, cylindrical, straight, obtuse at apex, truncate at base, $14\text{-}28\times5\text{-}7$	No data	No data	Aerangis koschyana, Bulbophylum cylindrum, Coelogyne cristata, Cymbidium spp.,Oncidium spp.,Orchids (various) Vanda sp., many other hosts belonging to various families	This paper; Sutton, 1992; Farr & Rossman, 2011
C. crossandrae*	On culture, varying in shape, cylindrical to elongated, oval, sometimes slightly curved, $18\text{-}29\times1\text{-}5~\mu m$		Dark greenish-brown, 3-5 septa, 97-147 \times 3-5 μm	${\it Cross and rain fundibuli form is, Vanda}~{\rm sp.}$	Patel et al., 1952
C. gloeosporioides	On <i>Vanda</i> sp., cylindrical, bluntly rounded ends and slightly flattened base, $12\text{-}20\times4$ - 6 , $\bar{x}=16\pm1.9\times5.1\pm0.6$, $n=30$		No setae present on Vanda sp.	Cattleya sp., Cymbidium sp., Dendrobium sp., Oncidium sp., Phalaenopsis sp., Stanhopea sp., Vanda sp., Vanilla planifolia, other hosts belonging to various families	This paper; Cannon <i>et al.</i> , 2008; Talubnak & Soytong 2010; Farr & Rossman, 2011
C. karstii	On <i>Vanda</i> sp., cylindrical, straight, obtuse at apex, base truncate, 12.5- 19.5 × 6-8.5, \bar{x} = 15.9 ± 1.4 × 6.8 ± 0.5, n = 60	Bell-shaped to cylindrical, Hyaline, 1-3 cells, unbranched, 11-42 × 4-7.5, $\bar{x} = 19.6 \pm 7.3 \times 5.7 \pm 0.9$, n = 30	Sparse, dark brown, 4-8 septa, base and apex paler, 46-104 \times 5-7, \bar{x} = 70.9 \pm 19.2 \times 6 \pm 0.7, n = 7	Arundina graminifolia, Calanthe argenteo- striata, Eria coronaria, Pleione bulbocodioides, Vanda sp., and other hosts belonging to various families	This paper
C. liriopes	On <i>Eria coronaria</i> , falcate, fusiform,19-25.5 \times 3-5, \bar{x} = 22.3 \pm 1.5 \times 4.1 \pm 0.4, n = 30	Cylindrical, hyaline, 1-4 cells, branched, 14.5-28(-38) \times 3.5-5.5, \bar{x} = 21.8 \pm 8.9 \times 4.5 \pm 0.7, n = 10	Brown, base and apex paler, 3-6 septa, often slightly inflated at base, 40.5 - 118×4 - 6.5 , \bar{x} = $77.6 \pm 24.5 \times 5.2 \pm 0.8$, $n = 10$	Eria coronaria, Lirope muscari, Pleione bulbocodioides	This paper; Damm et al., 2009

Table 4. Synopsis of characters of *Colletotrichum* species known from *Orchidaceae (continued)*

Species	Conidial shape and size (µm)	Conidiophores (µm)	Setae (µm)	Host	Reference
C. lujae*	No data	No data	No data	Lycaste sp.	Ciferri, 1961; Farr & Rossman, 2011
C. orchidearum*	On <i>Cattleya</i> sp., cylindrical, straight, rounded at ends. $13.5\text{-}22 \times 4.5\text{-}6.5$, $\bar{x} = 17.6 \pm 1.7 \times 5.7 \pm 0.6$, $n = 60$	Hyaline, usually pale brown at base, 1-2 cells, 13- 27.5 \times 4-7, \bar{x} = 20.8 \pm 4.8 \times 5.8 \pm 0.8, n = 20	Dark brown to black, usually inflated at base, 2-7 septa, 49.5-123.5 \times 4.5-7, \bar{x} = 77.2 \pm 21.5 \times 5.5 \pm 0.7, n = 20	Cattleya sp., Cymbidium hookerianum, Cymbidium sp., Oncidium flexuosum, Bulbophyllum sp., Dendrochilum sp., Rhynchostylis sp., Orchidearum exoticarum	This paper; Saccardo & Saccardo, 1906; Farr & Rossman, 2011
C. orchidearum f. cymbidii *	On Cymbidium pendulum, cylindrical, rounded at ends, 12-20 \times 4-6.5, \bar{x} = 15.2 \pm 2 \times 5.3 \pm 0.8, n = 30	Cylindrical, pale brown, 1-3 cells, branched, $14\text{-}25\times5\text{-}6.5$, $\bar{x}=20.3\pm4.2\times5.5\pm0.6$, $n=10$	Brown, inflated at base, 2-5 septa, $62\text{-}120\times5.5\text{-}7.5$, $\bar{x}=87\pm22.6\times6.7$ ±0.5 , $n=10$	Cymbidium pendulum	This paper
C. orchidearum f. eriae *	On Eria stellata, cylindrical, rounded at ends, $13\text{-}18\times4\text{-}6$, \bar{x} = $16.5\pm1.4\times5.2\pm0.5$, n = 30	Cylindrical, pale brown, branched, 1-2 cells, $11\text{-}18\times5\text{-}6$, $\bar{x}=14.8\pm2.5\times5.2\pm0.4$, n = 10	Brown, base inflated and paler, $60\text{-}130\times5\text{-}6$, $\bar{x}=92.5\pm25.4\times5.7\pm0.5$, $n=10$	Eria stellata (as syn. Eria javanica)	This paper
C. orchidearum f. physosisphonis *	On Physosiphon loddigesii, cylindrical, rounded at ends, 12-20 \times 3.5-6, \bar{x} = 15.5 \pm 2.3 \times 5.2 \pm 0.7, n = 30	Cylindrical, pale brown, 1-4 cells, branched, $13\text{-}28\times4\text{-}6.5$, $\bar{x}=14\pm2.2\times5.2\pm0.7$, $n=10$	Brown, base inflated and paler, 2-5 septa, 53-98 × 4.5-6, $\bar{x} = 86.5 \pm 16.4 \times 5.3 \pm 0.7$, n = 10	Physosiphon loddigesii (as syn. Pleurothallis tubata)	This paper
C. orchidearum f. stanhopeae *	On Stanhopeae oculatae, cylindrical, straight, rounded at ends, 15-18 \times 4 μm	No data	Pale olive, 75-105 \times 4.5 μm	Stanhopeae oculatae	Trotter & Cash, 1972
C. orchidearum var. cochliodae*	On Cochlioda sp., oblong, hyaline, rounded at ends, 10.5-17.5 \times 3.5-5 μm	Hyaline, $17.5-25 \times 3.5-5 \mu m$	Sparse, olive, obtuse at apex, 52.5-102.4 \times 3.5-5 μm	Cochiodae sp.	Trotter & Cash, 1972
C. orchidearum var. odontoglossi*	On $Odontoglossum$ sp. cylindrical, straight to curved, obtuse at ends, 14-17.5 \times 3.5-4.5 μm	Hyaline, $15-17.5 \times 3.5-4.5 \mu m$	Yellowish brown, 1-2 septa, $35-59.5 \times 2-3 \mu m$	Odontoglossum sp.	Trotter & Cash, 1972
C. siamense	On <i>Arundina graminifolia</i> , cylindrical to fusiform, rounded at ends, 12-14.5 \times 4.5-6, \bar{x} = 13.1 \pm 0.7 \times 5.5 \pm 0.4, n = 30	Cylindrical, hyaline, 1-2 cells, branched, 11- 18×4 -6, \bar{x} = $13.9 \pm 2.2 \times 4.7 \pm 0.7$, n = 10	Brown, 2-4 septa, inflated at base, $40\text{-}64\times4\text{-}6$, \bar{x} = $48.9.2\pm8.1\times5.1\pm0.6$, n = 10	Arundina graminifolia, Coffea arabica, Hymenocallis sp	This paper; Prihastuti <i>et al.</i> , 2009; Yang <i>et al.</i> , 2009
C. vanillae*	On Vanilla odorata, oblong to cylindrical, apex slightly wider than base, rounded at ends, $18-21\times5.6-7$	Cylindrical, pale olive , 2 cells, $24\text{-}34\times6.5\text{-}7$	Brown, base slightly inflated and pale brown, 50-100 $\times5\text{-}6$	Vanilla odorata	Saccardo & Saccardo, 1906

^{*} known from only Orchidaceae

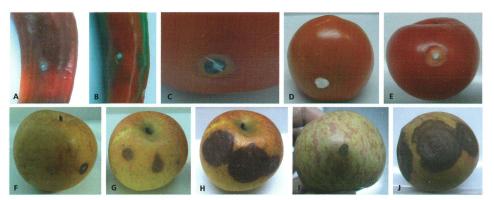


Fig. 6. Symptoms on fruit caused by *Colletotrichum* isolates from *Orchidaceae* through wound/drop inoculation. A, B, *Capsicum annuum* [A, Infected by *Colletotrichum karstii* (CORCG6) and B, C. siamense (CORCX8)]; C, D, E, Lycopersicon esculentum [C, infected by C. orchidearum (CORCX6), D, C. karstii (CORCG6) and E, C. karstii (CORCS4)]; F-J, Malus pumila [F, Infected by Colletotrichum karstii (CORCG6) with three inoculation points, G, H, Infected by C. orchidearum (CORCX6) with three inoculation points; I, Infected by C. karstii (strain CORCS4); J, Infected by C. siamense (CORCX8) with three inoculation points)]. A-G, I, 7 days after inoculation; H, J, after 14 days after inoculation.

available and thus they cannot be studied using modern concepts and these records should be treated as ambiguous. *Colletotrichum lujae* is very confusing because there is no record of this species in Index Fungorum or other references (Ciferri, 1961). The only information on this species is that it was isolated from *Lycaste* sp. in the Dominican Republic (Farr & Rossman, 2010); the record should be treated as ambiguous.

Host range and Colletotrichum species recognition

The understanding of host-specificity in Colletotrichum species may be better addressed using data on pathogenicity rather than occurrence on a host (Damm et al., 2009). Some Colletotrichum species appear to be host-specific, e.g. C. graminicola (Ces.) G.W. Wilson may be specific on Zea mays (Politis, 1975; Sutton, 1966; Hyde et al., 2009). However, most species do not appear to be hostspecific and infect different hosts in different plant genera or families. For example, C. cliviae was described from Amarillydaceae, but pathogenicity testing has indicated that this species can also infect Bletilla striata (Orchidaceae) by wound/drop inoculation (Yang et al., 2009). In the present study, two strains of C. cliviae were isolated from different genera of Orchidaceae, however C. cliviae was not found on Bletilla striata leaves with anthracnose symptoms. Colletotrichum boninense, C. coccodes and C. siamense can also infect several hosts (Lees & Hilton 2003; Moriwaki et al., 2003; Lu et al., 2004; Nitzan et al., 2006; Ben-Daniel et al., 2009; Prihastuti et al., 2009; Yang et al., 2009). Colletotrichum species can not be identified based on host occurrence, and molecular data is needed to reliably identify a species, however little is understood concerning the interaction between species and hosts and this requires extensive research, as also suggested in a recent study on Pestalotiopsis species on orchids (Tempesta et al., 2011).

Lifestyles of Colletotrichum species

Colletotrichum species such as C. acutatum J. H. Simmonds, C. asianum Prihastuti, L. Cai & K.D. Hyde, C. boninense, C. fructicola Prihastuti, L. Cai & K.D. Hyde, C. gloeosporioides, C. siamense and C. yunnanense Xiao Ying Liu & W.P. Wu, have been reported as endophytes from a wide range of plant species (Lu et al., 2004; Promputtha et al., 2007; Hyde et al., 2009; Prihastuti et al., 2009; Errasti et al., 2010; Sanchez-M et al., 2010; González & Tello, 2011). Of these, C. asianum, C. fructicola and C. siamense have been also isolated as epiphytes. This suggests that Colletotrichum species are able to survive within the healthy plant tissues as endophytes and are opportunistic pathogens (Prihastuti et al., 2009). When humidity and temperature are optimal for disease development, these endophytic species may cause anthracnose of their hosts. The term 'endophyte' is used for those fungi that grow inside living plant tissues without causing apparent disease symptoms (Hyde Soytong 2008)—they may be latent pathogens (Brown et al., 1998; Jumpponen, 2001; Photita et al., 2004) and/or saprobes (Gardes, 2002; Promputtha et al., 2007). The endophytic and pathogenic strains CORCS4 and CORCG6 isolated in this study infected Lycopersicon esculentum and Malus pumila fruits following wound/drop inoculation. This is slightly different from species isolated from coffee berries in Thailand (Prihastuti et al., 2009), where C. asianum, C. fructicola and C. siamense were isolated as pathogens, endophytes, as well as epiphytic fungi, and all strains tested were able to infect non-wounded coffee berries in pathogenicity tests. In contrast, a putative strain of C. gloeosporioides isolated as an endophyte from healthy Musa acuminata did not cause any disease of banana leaves following pathogenicity testing (Photita et al., 2004). Hence, the lifestyle of Colletotrichum species varies and is an area for further investigation.

Acknowledgements. The authors are indebted to Dagmar Triebel, Botanische Staatssammlung München, Germany, for supplying the holotype of *Colletotrichum orchidearum* f. *cymbidii*, *C. orchidearum* f. *eriae* and *C. orchidearum* f. *physosiphonis*, Shaun Pennycook, Landcare Research, Auckland, New Zealand for commenting on the forms/varieties of *Colletotrichum orchidearum*. The project was supported by the National Natural Science Foundation of China (No. 31070025) and Guizhou Science and Technology Department [No. (2010) 4002-1]. K.D. Hyde thanks the Global Research Network for Fungal Biology and King Saud University for support.

REFERENCES

- ALLESCHER R., FISHER A., FISHER E.D., HAUCK F., LIMPRISHT G., LUERSSEN C.H., MIGULA W., REHM H., RICHTER P. & WINTER G., 1902 Rabenhorst's Kryptogamen-Flora von Deutschland, Oesterreich und der Schweiz 2. Auf 1: 563.
- ARX J.A. von,1957 Die Arten der Gattung Colletotrichum Cda. Phytopathologische Zeitschrift 29: 413-468.
- BEN-DANIEL B., BAR-ZVI D. & TSROR L., 2009 An improved large-scale screening method for assessment of *Colletotrichum coccodes* aggressiveness using mature green tomatoes. *Plant Pathology* 58: 497-503.
- BROWN K.B., HYDE K.D. & GUEST D.I., 1998 Preliminary studies on endophytic fungal communities of *Musa acuminata* species complex in Hong Kong and Australia. *Fungal Diversity* 1: 27-51.
- CAI L., HYDE K.D., TAYLOR P.W.J, WEIR B.S., WALLER J., ABANG M.M., ZHANG J.Z., YANG Y.L., PHOULIVONG S., LIU Z.Y., PRIHASTUTI H., SHIVAS R.G., MCKENZIE E.H.C. & JOHNSTON P.R., 2009 A polyphasic approach for studying *Colletotrichum. Fungal Diversity* 39: 183-204.
- CANNON P.F., BUDDIE A.G. & BRIDGE P.D., 2008 The epitypification of *Colletotrichum gloeosporioides*. *Mycotaxon* 104: 189-204.

- CARBONE I. & KOHN L.M., 1999 A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91: 553-556.
- CHEN J., XU, L.L., LIU B. & LIU X.Z., 2007 Taxonomy of *Dactylella* complex and *Vermispora*. I. Generic concepts based on morphology and ITS sequences data. Fungal Diversity 26: 73-83.
- CHOI Y.W., HYDE K.D. & HO W.H., 1999 Single spore isolation of fungi. Fungal Diversity 3: 29-38. CIFERRI R., 1961 — Mycoflora Domingensis Integrata. Quaderno. Laboratorio Crittogamico, Istituto Botanico della Università di Pavia 19: 1-539.
- CROUS P.W., GAMS W., STALPERS J.A., ROBERT V. & STEGEHUIS G., 2004 MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19-22.

 DAMM U., WOUDENBERG J.H.C., CANNON P.F. & CROUS P.W., 2009 — Collectotrichum
- species with curved conidia from herbaceous hosts. Fungal Diversity 39: 45-87.
- ERRASTI A. DE, CARMARAN C.C. & VICTORIA NOVAS M., 2010 Diversity and significance of fungal endophytes from living stems of naturalized trees from Argentina. Fungal Diversity 41: 29-40.
- FARR D.F. & ROSSMAN A.Y., Fungal Databases, Systematic Mycology and Microbiology Laboratory, ARS, USDA. Retrieved May 23, 2011.
- GARDES M., 2002 An orchid-fungus marriage: physical promiscuity, conflict and cheating. New Phytologist 154: 4-7.
- GLASS N.L. & NALDSON G.C., 1995 Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323-1330.
- GONZALEZ V. & TELLO M.L., 2011 The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Diversity 47: 29-42.
- GUERBER J.C., LÎU B., JOHNSTON P. & CORRELL J.C., 2003 Characterization of diversity in Colletotrichum acutatum sensu lato by sequence analysis of two introns, mtDNA and intron RFLPs, and mating compatibility. Mycologia 95: 872-895.
- HYDE K.D., CAİ L., CANNON P.F., CROUCH J.A., CROUS P.W., DAMM U., GOODWIN P.H., CHEN H., JOHNSTON P.R., JONES E.B.G., LIU Z.Y, MCKENZIE E.H.C., MORIWAKI J., NOIREUNG P., PENNYCOOK S.R., PFENNING L.H., PRIHASTUTI H., SATO T., SHIVAS R.G., TAN Y.P., TAYLOR P.W.J., WEIR B.S., YANG Y.L. & ZHANG J.Z., 2009 — *Colletotrichum* – names in current use. *Fungal Diversity* 39: 147-182.
- HYDE K.D. & SOYTONG K., 2008 The fungal endophyte dilemma. Fungal Diversity 33: 163-173. HUELSENBECK J.P. & RONQUIST F., 2001 – MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754-755.
- JONES D.L., 2006 A Complete Guide to Native Orchids of Australia including the Island Territories. Reed New Holland, Sydney
- JUMPPONEN A., 2001 Dark septate endophytes are they mycorrhizal? Mycorrhiza 11: 207-211. LARKIN M.A., BLACKSHIELDS G., BROWN N.P., CHENNA R., MCGETTIGAN P.A., MCWILLIAM H., VALENTIN F., WALLACE I.M., WILM A., LOPEZ R., THOMPSON J.D., GIBSONT.J. & DIGGINS D.G., 2007 Clustal W and Clustal X. version 2.0. Bioinformatics 23: 2947-2948.
- LEES A.K. & HILTON A.J. 2003 Black dot (Colletotrichum coccodes): An increasingly important disease of potato. Plant Pathology 52: 3-12.
- LI J.Z., 1999 Identification of anthracnose pathogen on vanilla in Xishuangbanna. Journal of Yunnan Tropical Crops Science and Technology 22: 1-3.
 LIU X.Y., XIE X. M. & DUAN J.X., 2007 Colletotrichum yunnanense sp. nov., a new endophytic
- species from Buxus sp. Mycotaxon 100: 137-144.
- LU G.Z., CANNON P.F., REID A. & SIMMONS C.M. 2004 Diversity and molecular relationships of endophytic Colletotrichum isolates from the Iwokrama Forest Reserve, Guyana. Mycological Research 108: 53-63.
- LUBBLE C.M., ĎENMAN S., CANNON P.F., GROENEWALD J.Z., LAMPRECHT S.C. & CROUS P.W., 2004 — Characterization of *Colletotrichum* species associated with disease of Proteaceae. Mycologia 96: 1268-1279.
- MONTRI P., TAYLOR P.W.J. & MONGKOLPOM O., 2009 Pathotypes of Colletotrichum capsici, the causal agent of chili anthracnose, in Thailand. Plant Disease 93: 17-20.
- MORIWAKI J., SATO T. & TSUKIBOSHI T., 2003 Morphological and molecular characterization of Colletotrichum boninense sp. nov. from Japan. Mycoscience 44: 47-53.
- NITZAN N., TSROR L. & JOHNSON D.A., 2006 Vegetative compatibility groups and aggressiveness of North American isolates of Colletotrichum coccodes, the causal agent of potato black dot. Plant Disease 90: 1287-1292.
- NYLANDER JAA (2004). MrModeltest 2.0. Program distributed by the author. Dept. Systematic Zoology, ÈBC, Uppsala University, Sweden, Uppsala.
- O'DONNELL K. & CIGELNIK E., 1997 Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7: 103-116.

- RANNALA B. & YANG Z., 1996 Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43: 304-311.
- PATEL M.K., KAMAT M.N. & PANDE C.B., 1953 A new leaf blight of Crossandra infundibuliformis Nees. Indian Phytopathology 5: 136.
- PHOTITA W., LUMYONG S., LUMYONG P., MCKENZIE E.H.C. & HYDE K.D., 2004 Are some endophytes of *Musa acuminata* latent pathogens? *Fungal Diversity* 16: 131-140. PHOTITA W., TAYLOR P.W.J., FORD R., LUMYONG P., MCKENZIE E.H.C. & HYDE K.D., 2005 Morphological and molecular characterization of *Colletotrichum* species from herbaceous plants in Thailand. Fungal Diversity 18: 117-133.
- POLITIS D.J., 1975 The identity and perfect state of Colletotrichum graminicola. Mycologia 67: 56-62.
- **PHOULIVONG** ONG S., CAI L., CHEN H., MCKENZIE E.H.C., ABD-ELSALAM K., CHUKEATIROTE E. & HYDE K.D., 2010 — Colletotrichum gloeosporioides is not a common pathogen on tropical fruits. Fungal Diversity 44: 33-43.
- PRIHASTUTI H., CAI L., CHEN H., MCKENZIE E.H.C. & HYDE K.D., 2009 Characterization of Colletotrichum species associated with coffee berries in northern Thailand. Fungal Diversity 39: 89-109.
- PRIHASTUTI H., CAI L., CROUCH J. A., PHOULIVONG S., MOSLEM M. A., MCKENZIE E. H. C. & HYDE K. D., 2010 Neotypification of *Collectrichum falcatum*, the causative
- agent of red-rot disease in sugarcane. *Sydowia* 62: 283-293.

 PROMPUTTHA I., LUMYONG S., DHANASEKAREN V., MCKENZIE E.H.C., HYDE K.D. & JEEWON R., 2007 A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microbial Ecology 53: 579-590.
- SACCARDO P.A. & SACCARDO D., 1906 Sylloge Fungorum 18: 1-838.
- SACCARDO P.A., SACCARDO D., TRAVERSO G.B. & TROTTER A., 1931 Sylloge Fungorum 25: 1-1093.
- TROTTER A. & CASH E.K. 1972 Sylloge Fungorum 26: 1-1563. SANCHEZ MARQUEZ S., BILLS G.F., ACUNA L.D. & ZABALGOGEAZCOA I., 2010 Endophytic mycobiota of leaves and roots of the grass Holcus lanatus. Fungal Diversity 41: 115-123.
- SHIVAS R.G. & TAN Y.P., 2009 A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov. Fungal Diversity 39:
- SUTTON B.C., 1966 Development of fruitifications in Colletotrichum graminicola (Ces.) Wils. and related species. Canadian Journal of Botany 44: 887-897.
- SUTTON B.C., 1980 The coelomycetes. Fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, UK.
- SUTTON B.C., 1992 The genus Glomerella and its anamorph Colletotrichum. In: BAILEY J.A. & JEGER M.J. eds. Colletotrichum: Biology, Pathology and Control. CAB International: Wallingford, pp 1-26.
- TAYLOR J.W., JACOBSON D.J., KROKEN S., KASUGA T., GEISER D.M., HIBBETT D.S. & FISHER M.C., 2000 - Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology 31: 21-32.
- TALUBNAK C. & SOYTONG K., 2010 Biological control of vanilla anthracnose using Emericella nidulans. Journal of Agricultural Technology 6: 47-55.
- TEMPESTA S., RUBINI A., PUPULIN F. & RAMBELLI A., 2011 Pestalotiopsis endophytes from leaves of two orchid species collected in Costa Rica. Cryptogamie, Mycologie 32(3): 315-321.
- TEOH E.S., 2005 Orchids of Asia. (3rd), Times Editions-Marshall Cavendish, Saik Wah Press. Singapore, pp345.
- THAN P.P., JEÉWON R., HYDE K.D., PONGSUPASAMIT S., MONGKOLPOM O. & TAYLOR P.W.J., 2008 — Characterization and pathogenicity of Colletotrichum species associated with anthracnose disease on chilli (*Capsicum* spp.) in Thailand. *Plant Pathology* 57: 562-572. WIKEE S., CAI L., PAIRIN N., MCKENZIE E.H.C., SU Y.Y., CHUKEATIROTE E., THI H.N.,
- BAHKALI A.H., MOSLEM M.A. ABDELSALAM K. & HYDE K.D., 2011 Colletotrichum species from Jasmine (Jasminum sambac). Fungal Diversity 46: 171-182. WHITE T.J., BRUNS T., LEE S. & TAYLOR J., 1990 Amplification and direct sequencing of
- fungal ribosomal RNA genes for phylogenetics. In: M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White. (eds.) PCR Protocols: A Guide to Methods and Applications. Academic
- Press, San Diego, pp. 315-322. YANG Y.L., LIU Z.Y., CAI L., HYDE K.D., YU Z.N. & MCKENZIE E.H.C., 2009 Colletotrichum anthracnose of Amaryllidaceae. Fungal Diversity 39: 123-146.
- ZHAXYBAYEVA O. & GOGARTEN J.P., 2002 Bootstrap, Bayesian probability and maximum likelihood mapping: Exploring new tools for comparative genome analyses. BMC Genomics 3, 4.