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Abstract — The liverwort Aneura pinguis is represented in Europe by 4 cryptic species (A, B,
C and D). They differ in morphology and ecological preferences. Three molecular marker
systems (RAPD, ISJ and katG) were used to identify particular cryptic species. Ten samples
of 4 cryptic species of A. pinguis and 2 samples of A. maxima (as an outgroup) were
analysed. The 18 primers representing 3 different DNA marker categories revealed
147 bands, and 56 of them were species-specific. Among the cryptic species of A. pinguis, the
greatest number of 21 specific bands was observed in species D, compared to 8 in species C,
7 in species B, 5 in species A, and 15 in A. maxima. The value of genetic similarity between
analysed populations at the intraspecific level was /=0.90. In contrast, the / value between
particular studied cryptic species ranged from 0.385 to 0.690. The similarities showed that
species C and D are the most distinct, whereas species A and B are the most similar. The
results of DNA analysis are consistent with earlier enzymatic data and support the division
of A. pinguis into 4 cryptic species.

DNA markers / RAPD /ISJ / katG / cryptic species / Aneura pinguis | Metzgeriales / Hepaticae

INTRODUCTION

Cryptic species have separate gene pools due to reproductive isolation
but they do not differ morphologically, or show only slight differences (Mayr,
1948, 1996). They are identified in routine allozyme or DNA analyses (Avise,
2004) and have proved to be common in animals (Sonneborn, 1975; Macdonald &
Goldstein, 1999; Smith & Fonseca, 2004; Chang et al., 2006), plants (Lewis &
Flechtner, 2004; Whittall et al., 2004; Fernandez et al., 2006; Grundt et al., 2006),
fungi (Fell et al., 1992; Girandt et al., 1999; Naumova et al., 2004; Balajee et al.,
2005) and bacteria (Wimpee et al., 1991; Laguerre et al., 1994).

* Correspondence and reprints: alinbacz@amu.edu.pl
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Cryptic species were first identified in certain bryophyte groups, e.g.
liverworts and mosses with the help of allozymes in the late 1970s and in the early
1980s. The first case of cryptic speciation in liverworts was reported from Poland,
in Conocephalum conicum (L.) Dumort. (Szweykowski & Krzakowa, 1979), and
Pellia epiphylla (L.) Corda (Zielinski, 1987a). They were later identified also in
other liverworts, such as Pellia endiviifolia (Dick.) Dumort. (Zielinski, 1987a),
Marchantia polymorpha (Nees) Burgeff (Boisselier-Dubayle & Bischler, 1989;
Boisselier-Dubayle ef al., 1995), Riccia dictyospora (Howe) (Dewey, 1989), Aneura
pinguis (L.) Dumort. (Szweykowski & Odrzykoski, 1990), Corsinia coriandrina
(Spreng.) Lindb. (Boisselier-Dubayle & Bischler, 1998), Reboulia hemispherica
(L.) Raddi (Boisselier-Dubayle et al., 1998), Targonia hypophylla L. (Boisselier-
Dubayle & Bischler, 1999) and Conocephalum japonicum (Thumb.) Grolle (Miwa
et al., 2003; Miwa et al., 2004), as well as in moss species, including Leucobryum
glaucum (Hedw) Angstr and L. albidum (P. Beauv.) Lindb. (Patterson et al.,
1998), Plagiomnium cuspidatum Sieb. & Zucc. (Wyatt & Odrzykoski, 1998)
Neckera pennata Hedw. (Appelgren & Cronberg, 1999), Mielichhoferia elongata
Hoppe & Hornsch.) Nees & Hornsch. and M. mielichhoferiana (Funck) Loeske
(Shaw, 2000), Rhytidiadelphus subpinnatus (Lindb.) T. J. Kop. and R. squarrosus
(Hedw.) Warnst. (Vanderpoorten et al., 2003).

Similarly as the cryptic species discovered in other groups of living
organisms, they are characterized by the presence of distinct gene pools (different
multilocus genotypes) as well as by the absence of morphological differences in
the vast majority of cases (Nei, 1987; Avise, 2004). If present, such differences are
slight only. Genetic similarity (/) between populations within a cryptic species
often exceeds 0.90, while between cryptic species is often lower than 0.60
(Odrzykoski, 1987; Zielinski 1987a; Dewey, 1989). For the above-mentioned
cryptic species of liverworts, it ranged from 0.155 to 0.667, with a mean value of
0.354 (Baczkiewicz et al., 2005). In comparison, morphologically well-
distinguished species have parameters of genetic similarity at the intraspecific
level, I>0.90 (Gottlieb, 1981; Crawford, 1983) and at the interspecific level, /=0.67
(Gottlieb, 1981) or 0.87 (Nei, 1987).

The origin of cryptic species is related to the process of speciation,
involving natural selection that favours various genotypes in contrasting
environmental conditions. The analysis of allele frequency in populations enables
to determine whether these populations have a common gene pool or not, i.e.
whether they represent the same or different biological species. Genetic variation
patterns at the intraspecific and interspecific level differ considerably; therefore
cryptic species can be detected relatively easily, already during routine
population-based studies (Zielinski, 1987a). Populations representing separate
gene pools, i.e. separate biological species, differ with regard to the presence of
alternative alleles at some loci, being their diagnostic alleles.

Populations belonging to different biological species have separate
multilocus genotypes, which are not subject to recombination due to the existence
of a reproductive barrier (Szweykowski et al., 1981; Odrzykoski, 1987). The
reproductive barrier is probably a by-product of genetic differences between
species (Avise, 2004). The lack of experimental data on existence a barrier is not
a factor excluding the possibility to distinguish cryptic species, since their presence
may be confirmed directly by the differences in their gene pools, as mentioned
above (Szweykowski et al., 1981; Zielinski, 1987b; Szweykowski & Odrzykoski,
1990).

The cryptic species within bryophytes are sympatric or allopatric, which
indicates that their speciation must have been affected by ecological or
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geographical conditions (Odrzykoski & Szweykowski, 1991; Szweykowski et al.,
1995; Shaw, 2001; Baczkiewicz et al., 2005).

The identification of cryptic species within various groups of living
organisms is of great significance to population genetics, taxonomy and
biogeography, so they are subject to extensive research (Wyatt et al., 1989a,b;
Wachowiak-Zielinska & Zielinski, 1995; Mayr, 1996; Avise, 2004; Zielinski &
Polok, 2005).

Aneura pinguis (L.) Dumort. is a dioecious thallose liverwort, whose
chromosome number is n=9. It can be found in Europe, America, Asia, Africa,
Australia, New Zealand and Madagascar (Schuster, 1992; Paton, 1999; Damsholt,
2002). Due to its wide ecological tolerance, A. pinguis is common in Poland both
in lowlands and in upper parts of mountains (Baczkiewicz et al., 2005). A. pinguis
is taxonomically homogenous, although it shows considerable morphological
variation (Furuki, 1991; Schuster, 1992; Paton, 1999). The first two cryptic species
of A. pinguis, known as A and B, were detected in Poland by Szweykowski &
Odrzykoski (1990). They had separate multilocus genotypes with reference to 4 of
the 7 analysed enzymatic loci, coding for AAT, PGD, PGM and SDH (57.1%), and
displayed different ecological preferences. Cryptic species A grew on wet
limestone and its detritus, whereas cryptic species B colonized the humus layer
overlying the rocks. In the meantime, the third cryptic species (C) of A. pinguis was
identified (Baczkiewicz et al., unpublished data). These species differed in respect
of four characteristics of oil-bodies, particularly their number per cell and size
(Buczkowska et al., 2005), as well as with regard to 13 of 18 morphological and
anatomical characters of the gametophyte (Buczkowska et al., 2005). Isoenzymatic
studies have revealed the presence of cryptic species A also in the territories of
Germany and Slovakia, of cryptic species B in Lithuania and Ireland, and of cryptic
species C in Ireland. The fourth cryptic species, D, was reported from Great
Britain and Ireland. These cryptic species had distinct multilocus genotypes, in 5 to
7 of the 12 analysed loci (Baczkiewicz & Buczkowska, 2005). Further enzymatic
studies showed that the cryptic species of A. pinguis in Poland differ significantly
in terms of location and distribution. The populations found in the Tatra Mts are
represented by species A (90.9%), C (7.9%) and B (1.2%), the populations from
the Pieniny Mts by species A (96.0%) and B (4.6%), while the populations from
the Bieszczady Mts by species B (96.0%) and C (4% ). The lowland populations are
represented primarily by species B (about 68%), but also C (about 28%) and
A (about 4%). Genetic similarity within particular cryptic species is very high, i.e.
0.956 in A, 0.772 in B and 0.964 in C, while genetic similarity between them varies
from 0.219 to 0.361 (Baczkiewicz et al., unpublished data).

New, highly variable DNA markers have been introduced into studies on
bryophytes recently (Fiedorow et al., 2001; Shaw, 2001; Pacak et al., 2002;
Vanderpoorten et al., 2003; Feldberg et al., 2004). This provided the basis for
confirming the presence of cryptic species distinguished by using isoenzymes, and
for proposing new categories of PCR-based diagnostic markers (Zielinski &
Polok, 2005). For example, ISJ (Intron Splice Junction) markers have confirmed
the existence of 2 cryptic species in C. conicum species S and L (Zielinski,
unpublished data), and of a third cryptic species in P. endiviifolia (Zielinski &
Polok, 2005).

No DNA marker system has been developed for the cryptic species of
A. pinguis to date. Therefore, the aims of the present study were: (1) to find DNA
markers specific to its cryptic species, (2) to compare the effectiveness of 3 DNA
marker systems for distinguishing the cryptic species, (3) to compare the results of
DNA and isoenzymatic analysis of cryptic species of A. pinguis.
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MATERIAL AND METHODS

Plant material

From various localities, 10 samples of the A. pinguis complex (3 samples
of species A, B, C, and 1 of D) and 2 samples of Aneura maxima (Schiffn.) Steph.
as an outgroup were studied (Table 1). Each cryptic species was identified by the
isozyme method (Baczkiewicz & Buczkowska, 2005). A. maxima was identified
morphologically according to Furuki (1991), Schuster (1992), Buczkowska &
Baczkiewicz (2006). From each sample, 10-15 thalli were randomly chosen for the
molecular study. They were all stored at —80°C until used. Vouchers were
deposited in the POZW herbarium.

DNA extraction

In total, 0.3-1.5 g of thalli were taken from each sample. DNA was
isolated by the modified CTAB procedure (Murray & Thompson, 1980). Briefly,
the liquid-nitrogen-groundthalli were thoroughly mixed with 3 ml of preheated
CTAB isolation buffer (2% CTAB, 100 mM Tris-HCI, pH 8.0, 20 mM EDTA,
1.4 M NaCl and 2% B-mercaptoethanol) and incubated at 56°C for 1 h. After
3 chloroform/isoamyl alcohol extractions, the DNA was precipitated and
dissolved in sterile, deionized H,O. The purity of DNA samples was assessed
spectrophotometrically and reached 88-94%. The DNA content of the samples
was 11.2 pg to 46.4 pg.

Table 1. Localities and herbarium number (POZW) of studied samples of A. pinguis cryptic
species A, B, C and D, and A. maxima.

No of

Species Localities POZW No
sample

A. pinguis-A Al Pieniny Mts, Skalskie stream, Skalskie reserve P 63-4
A2 Tatra Mts, Jaworzynka Valley T73-2
A3 Tatra Mts, Chochotowska Valley T 86-3

A. pinguis-B B1 Tatra Mts, Wielka Sucha Valley T 79-1
B2 Wielkopolska region, Diabli Skok reserve DS 8-1
B3 Wielkopolska region, in Poznan city PO 1-3

A. pinguis-C C1 Tatra Mts, Sucha Woda Valley T 74-4
C2 Tatra Mts, Skupinéw Uptaz Mt., NE slope T132-1
C3 Tatra Mts, Pariszczyca Valley T 157-1

A. pinguis-D D Great Britain, Scotland, North Ebudes ANG 3-1

A. maxima M1 Wielkopolska region, Diabli Skok reserve DS5-2

M2 Tatra Mts, Capowski Forest T161-1
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RAPD markers

The sequences of 6 RAPD primers used for DNA amplification in this
study are given in Table 2. The PCR reaction was conducted in a volume of 20 pl
containing PCR buffer [20 mM (NH,4),SO,4 and 50 mM Tris-HCI, pH 9, at 25°C],
2 mM MgCl,, 1 x concentrated Enhancer containing betaine, 200 uM each of
dATP, dGTP, dCTP, and dTTP, 0.3 pM primer, 1 unit of Tfl polymerase
(Epicentre Technology) and 60 ng of template DNA. The reaction proceeded at
94°C for 3 min., followed by 45 cycles at 94°C for 1 min., 37°C for 1 min., and 72°C
for 2.5 min., with a final extension step of 72°C for 5 min.

IST markers

The sequences of 4 ISJ primers used for DNA amplification in this study
are given in Table 2. The PCR reaction was conducted in a volume of 20 ul
containing PCR buffer [20 mM (NH,4),SO,4 and 50 mM Tris-HCI, pH 9 at 25°C],
2 mM MgCl,, 1 x concentrated Enhancer containing betaine, 200 uM each dATP,
dGTP, dCTP, dTTP, 0.3 uM primer, 1 unit of Tfl polymerase (Epicentre

Table 2. The sequences of RAPD, ISJ and katG primers used in the study.

Type of marker Abbreviation nu[c\;(e).ogj;es Primer sequence
OPA-01 10 S’CAGGCCCTTC®
OPB-14 10 STCCGCTCTGG3’
OPB-19 10 5 ACCCCCGAAG 3
RAPD
OPD-02 10 5GGACCCAACCE
OPD-03 10 SGTCGCCGTCA3
OPD-07 10 5 TTGGCACGGG 3
IS11 10 S’CAGACCTGCA 3’
1S12 18 S’ACTTACCTGAGGCGCCACY
189 1SJ4 18 5SGTCGGCGGACAGGTAAGT3
1SJ5 16 5’ CAGGGTCCCACCTGCA >
katG 4-1 19 5 TCGACTTGACGCCCTGACG3’
katG 4-2 18 5S’CAGGTCCGCCCATGAGAG3
katG 5-1 19 5 CGACAACGCCAGCTTGGAC¥®
katG 5-2 20 5’ GGTTCACGTAGATCAGCCCC ¥
katG katG 6-1 20 5 GCAGATGGGGCTGATCTACG 3
katG 6-2 18 5> ACCTCGATGCCGCTGGTG 3’
katG 11-1 20 5 TGCTCGACAAGGAGAACCTG ¥

katG 11-2 20 5’ TCCGAGTTGGACCCGAAGAC¥®
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Technology) and 60 ng of template DNA. The reaction proceeded at 94°C for
3 min., followed by 45 cycles at 94°C for 1 min., 56°C for 1 min., and 72°C for
2.5 min., with a final extension step of 72°C for 5 min.

katG markers

The 4 pairs of primers complementary to Mycobacterium tuberculosis
(Zopf) katG gene (Table 2) encoding catalase-peroxidase were used according to
a method developed by Zielinski & Polok (2005). The amplification mixture of a
20-ul volume contained 20 mM (NH,4)SOy,, 50 mM Tris-HCl (pH 9.0 at 25°C),
1.5 mM MgCl,, 1 x concentrated Enhancer with betaine, 200 pM each of dATP,
dGTP, dCTP, dTTP, 1.0 uM of each primer, 0.75 unit of Tfl polymerase
(Epicentre Technology) and 100 ng of template DNA. The reaction proceeded at
94°C for 1 min., followed by 30 cycles at 94°C for 1 min., 58°C for 1 min., and 72°C
for 1.5 min., with a final extension step of 72°C for 5 min.

Electrophoresis

PCR samples were loaded on a 1.2% (for RAPD and ISJ markers) or
1.5% (katG) agarose gel containing 0.5 pg/ml of ethidium bromide and separated
in 1x TBE buffer at 120 V constant power. Gels were observed in UV light
(312 nm) and photographed.

Data analysis

All bands that could be reliably read were treated as single dominant loci
and scored as either present (1) or absent (0) across all genotypes. The degree of
genetic similarity was determined with Nei’s (1978) formula and calculated by
using POPGENE-1.32 software (Yeh & Boule, 1999). The dendrogram was
created on the basis of UPGMA. Statistica 6.0 was used for principal component
analysis.

RESULTS

Primer efficiency

The analysis of 10 samples of the four cryptic species of A. pinguis and
2 samples of A. maxima by 18 primers representing 3 DNA marker categories
enabled to distinguish 147 different bands. The highest number of 57 different
bands was revealed by 6 RAPD primers — on average 9.5 bands per primer. The
4 ISJ primers used in the study showed a similar efficiency, revealing a total of
45 different bands (11.3 bands per primer). Four pairs of primers complementary
to the bacterial sequences of the katG gene enabled to distinguish also 45 different
bands (11.3 bands per pair of primers).

From 147 distinguished bands, 112 were present in A. pinguis (cryptic
species A, B, C and D) and 49 in A. maxima (Table 3). Numbers of bands
detected by RAPD, ISJ and katG markers were, respectively: 45, 37 and 30 in
cryptic species of A. pinguis and 23, 15 and 11 in A. maxima.
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Table 3. Efficiency of RAPD, ISJ and katG markers in identification of polymorphic and specific
bands in A. pinguis cryptic species and A. maxima.

RAPD 187 katG
Species Total
N % N % N %

Bands detected in A. pinguis and A. maxima

Aneura pinguis 45 100.0 37 100.0 30 93.3 112

Aneura maxima 23 13.0 15 13.3 11 18.2 49

Bands specific for A. pinguis cryptic species and A. maxima

A. pinguis-species A 4 20.0 1 12.5 0 0 5
A. pinguis-species B 1 3.0 4 14.8 2 11.8 7
A. pinguis-species C 0 0 1 50.0 7 41.2 8
A. pinguis-species D 5 26.3 4 333 12 54.6 21
Aneura maxima 9 40.9 4 26.7 2 182 15
Total 19 333 14 311 23 511 56

DNA polymorphism in cryptic species of A. pinguis and in A. maxima

In the analysed material, 144 of 147 identified bands were polymorphic
(98%). In A. pinguis, the RAPD and ISJ markers detected 100% of polymorphic
bands and katG detected 93.3%, while in A. maxima the corresponding values
were: 13.0%, 13.3.% and 18.2% (Table 3).

The highest polymorphism was observed in A. pinguis species B (36.7%
of polymorphic bands), followed by A. pinguis species A (11.6%) and A. pinguis
species C (2.0%). In A. maxima, 4.8% of bands were polymorphic. The ISJ
markers turned out to be the most polymorphic within the species examined.
46.7% of polymorphic ISJ bands were found in A. pinguis species B, 15.6% in
A. pinguis species A, and 4.4% in A. maxima. There were no polymorphic ISJ
bands in A. pinguis species C. Lower polymorphism was revealed by RAPD
markers. The value of polymorphic RAPD bands varied from 38.6% in A. pinguis
species B to 12.3% in A. pinguis species A, and reached 5.3% A. maxima. The
4 pairs of katG primers revealed the lowest level of polymorphism. However, as
in the case of ISJ] and RAPD markers, the highest percentage of polymorphic
katG bands was recorded in A. pinguis species B (24.4%). Interestingly, the
percentage of polymorphic katG bands in the other cryptic species of A. pinguis
(A and C) was 4-fold lower (6.7%). Moreover, a low level of polymorphism was
also found in A. maxima samples (4.4%).

Genetic similarities at the intra- and interspecific levels

Values of genetic similarities between analysed populations at the
intraspecific level were very high and often exceeded /=0.90 (Table 4). The
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Table 4. Nei’s genetic similarities (above the diagonal) and genetic distances (below the diagonal)
among A. pinguis cryptic species and A. maxima.

Samples Al A2 A3 BI B2 B3 CI c2 C3 D Am-1 Am-2

Al 0918 0.932 0544 0660 0.599 0.539 0548 0.522 0599 0.680 0.646
A2 0.085 0918 0.585 0.660 0.612 0.5303 0.539 0.530 0.585 0.653 0.646
A3 0.071  0.085 0585 0.674 0.612 0.5303 0.539 0.530 0.585 0.680 0.646
B1 0.608 0.536 0.536 0.735 0.728 0417 0.426 0400 0442 0497 0.490
B2 0.416 0416 0395 0.308 0.803 0.530 0.539 0530 0.517 0571 0.551
B3 0513 0491 0491 0318 0.220 0.548 0.556 0.548 0.551 0.619 0.585
C1 0.618 0.634 0.634 0.874 0.634 0.602 0989 0978 0374 0.530 0.496
c2 0.602 0.618 0.618 0853 0.618 0.586 0.011 0.967 0.383 0.539 0.504
C3 0.651 0.634 0.634 0917 0.634 0.602 0.023 0.034 0391 0.513 0478
D 0.513 0.536 0536 0816 0.660 0.596 0.984 0961 0.939 0.497 0.476
Am-1 0385 0426 0385 0.700 0.560 0.480 0.634 0.618 0.668 0.700 0.952

Am-2 0.437 0437 0437 0714 0.59 0536 0.702 0.685 0.738 0.742 0.049

highest similarity was found between 3 samples of A. pinguis species C, which
were almost identical with the / value ranged from 0.967 to 0.989. A little higher
differentiation was observed in samples of A. pinguis species A, where the
genetic similarity coefficient ranged from 0.918 to 0.932. In contrast to species A
and C, 3 samples of A. pinguis species B were the most differentiated (from 0.728
to 0.803). The differentiation between samples of A. maxima was similar to
A. pinguis species A and C (/=0.952).

The genetic similarities were much lower at the interspecific level than
at the intraspecific level. The I value between species A, B, C and D of A. pinguis
ranged from 0.385 to 0.690, confirming their distinction. The I value was the
highest between species A and B (/=0.690) and the lowest between C and D
(/=0.385). The DNA markers applied in the study indicated a similar degree of
genetic identity between cryptic species of A. pinguis as between them and the
two A. maxima populations. The I value ranged from 0.492 to 0.685 and was the
highest between A. pinguis species A and A. maxima and the lowest between
A. pinguis species D and A. maxima (0.492). It is worthy of note that the genetic
similarity between A. pinguis species C and D (0.385) was even lower than
between individual cryptic species and A. maxima (Table 5).

The cluster analysis, presented in the form of an UPGMA dendrogram,
divided the 12 studied populations into 5 groups, corresponding to 4 cryptic
species of A. pinguis and A. maxima (Fig. 1). The outermost position is occupied
by A. maxima and A. pinguis species C. The scatter diagram based on PCA
analysis also grouped the 12 studied populations into 5 entities, according to their
biological status (Fig. 2).

There were only slight differences between applied DNA markers in the
level of genetic similarity assessment among taxa examined (Table 5). For the
RAPD markers the similarities between A. pinguis cryptic species ranged from
0.555 to 0.746 (mean 0.654), and for ISJ from 0.541 to 0.737 (mean 0.657). Greater
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Table 5. Nei’s genetic similarities among A. pinguis cryptic species A, B, C and D, and A. maxima

based on three DNA marker categories.

Species pair RAPD IAYA katG Total
A. pinguis A - B 0.637 0.621 0.818 0.690
A. pinguis A - C 0.746 0.737 0.674 0.552
A. pinguis A -D 0.559 0.660 0.609 0.605
A. pinguis A - A. maxima 0.600 0.613 0.859 0.685
A. pinguis B - C 0.681 0.691 0.712 0.550
A. pinguis B - D 0.636 0.541 0.455 0.550
A. pinguis B - A. maxima 0.550 0.564 0.730 0.611
A. pinguis C-D 0.667 0.689 0.293 0.385
A. pinguis C - A. maxima 0.649 0.697 0.631 0.520
A. pinguis D - A. maxima 0.436 0.539 0.517 0.492

Al
A3

A2

M1

Uu

M2
B1

B2
B3

C1

Cc2

LT

Cc3

1 1 L 1 1

1 0.90 0.80 0.70 0.60 0.50
GENETIC SIMILARITY

Fig. 1. UPGMA grouping
of A. pinguis cryptic
species and A. maxima
based on Nei’s genetic
similarity.

differences were revealed by katG markers, where the / value ranged from 0.293
to 0.818 (mean 0.594). Furthermore, the [ value between particular cryptic species
of A. pinguis and A. maxima for RAPD markers ranged from 0.436 to 0.649
(mean 0.559), for ISJ from 0.539 to 0.697 (mean 0.603), and for katG from 0.517

to 0.859 (mean 0.684).

The differences in I value were observed between A. pinguis spe-cies A
and B for katG markers, (0.818), RAPD (0.637), and ISJ (0.621). In the case of
A. pinguis species D and C, the lowest [ value was found in the katG markers,
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bands (38.1%), including

Fig. 2. Principal component analysis of A. pinguis cryptic 41 .(36‘7%) ip C_ryptic
species and A. maxima. species of A pinguis and
15 (30.6%) in A. maxima

(Table 3). Among cryptic
species of A. pinguis, the greatest number of 21 specific bands were observed in
species D, 8 in C, 7 in B, and 5 in A.

The greatest number of 23 species-specific bands was revealed by katG
markers. Most of them were observed in A. pinguis species D (12) and C (7). Two
other species-specific bands of this category were found in A. pinguis species B
and A. maxima. The RAPD markers revealed 19 species-specific bands: 9 in
A. maxima, 5 in A. pinguis species D, 4 in A, and 1 in B. The lowest number of
14 species-specific bands was identified with ISJ markers. Among them, 4 were
found in A. pinguis species B, D and in A. maxima. In A. pinguis species A and
C the ISJ markers revealed only 1 species-specific band.

For molecular identification of cryptic species in the A. pinguis complex,
katG markers appeared the most useful. Except the katG-6 primers, which make
it possible to distinguish only A. pinguis species D from the other cryptic species,
the other katG primers permit to identify up to 4 cryptic species at once. The
katG-4 primers enable identification of all A. pinguis cryptic species (Fig. 3).
A. pinguis species D has bands 1, 5 and 9, but A. pinguis species A has only band
5, while bands 3 and 4 are characteristic for A. pinguis species B, and bands 2, 6,

D A1 A2 A3 B1 B2 B3 C1 C2 C3 M1 M2

D A1 A2 A3 B1 B2 B3 C1 C2 C3 M1 M2
katG - 4 katG - 11 .

Fig. 3. Amplification products generated by katG-4 and katG-11 primers.
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7 and 8 are characteristics for A. pinguis species C. No amplifications are found
in A. maxima populations. The katG-5 primers enable to distinguish A. pinguis
species C, D and A. maxima. Bands 3 and 4 are present only in A. pinguis
species C, whereas bands 1 and 9 are characteristics for A. pinguis species D and
A. maxima, respectively. The katG-11 primers enable molecular identification of
the same species as katG-5 (Fig. 3). Five bands (2, 3, 8, 13 and 16) are
characteristics for A. pinguis species D. The first band was present only in
A. pinguis species C and band 7 was found only in A. maxima samples.

DISCUSSION

The present study, conducted by using DNA markers, confirmed the
presence of 4 cryptic species of A. pinguis, previously detected with isoenzymes
(Szweykowski & Odrzykoski, 1990; Baczkiewicz et al., 2005; Andrzejewska,
unpublished). The tested cryptic species have distinct gene pools, as confirmed by
the presence of specific DNA markers and different multilocus genotypes, as well
as by low values of genetic similarity between populations at the interspecific
level, in comparison with the intraspecific level.

The DNA markers used in this study were found to be more effective
with regard to the number of revealed diagnostic loci, as compared to isoenzymes.
The analysis of 12 enzymatic loci (Baczkiewicz et al., 2005) enabled to identify a
total of 9 diagnostic loci. Particular cryptic species had from 1 (species D) to 4
(species B) of such loci, absent in the other species. The compared pairs of cryptic
species had different multilocus genotypes, in which 5 to 7 loci (approx. 50%)
were represented by alternative alleles.

A comparable analysis performed with the use of 6 RAPD primers, 4 ISJ
primers and 4 pairs of primers complementary to the bacterial sequence of the
katG gene, revealed a total of 56 specific loci, from 5 to 21 for each of the
examined cryptic species. It must be stressed that species D has a higher number
of specific loci (21) than the outgroup species A. maxima (15). Cryptic species D
has been identified most recently in this group. It has been reported only from
Great Britain and Ireland (Baczkiewicz et al., 2005). Species D differs
considerably from the other 3 cryptic species in terms of the structure of oil-
bodies, which are coarsely granular and big (5-12 pm) in species D, whereas
homogenous to finely granular and smaller (1-10 um) in species A, B and C
(Buczkowska et al., 2005). Paton (1999) demonstrated 2 types of oil-bodies,
smaller (1-5 um) and bigger (5-12 um), in A. pinguis from Great Britain, which
may correspond to cryptic species B and D (Baczkiewicz et al., 2005).

The high number of diagnostic markers observed at the DNA level
allowed us to verify the degree of differences between the cryptic species of
A. pinguis, as well as to shift species D from the position with the lowest number
of specific markers (1) to the position with the highest number of these markers
(21). Despite the restrictions of the isoenzymatic analysis, related primarily to the
limited number of enzymatic loci analysed, which in most cases ranges from 10 to
20, this method may be successfully used for screening tests. It should be
emphasized that almost all cryptic species within bryophytes were detected by this
method. Isoenzymes are highly effective in identifying cryptic species, since they
permit the analysis of enzyme-coding genes, which are most probably subject to
selection (Nevo, 1983). Two cryptic species of P. epiphylla, which had alternative
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alleles at 6 loci of the 17 analysed (35.3%), were detected in this way (Zielinski,
1987a). They also differed in thallus size under natural conditions, and showed
statistically significant differences in the majority of morphological and
anatomical characters of the thallus determined in culture. Their distribution in
Poland is allopatric. P. epiphylla N, n=9, with small-sized thalli, is rare and can be
found only in northern Poland (and in Scandinavia), while P. epiphylla S, n=9,
with larger thalli resembling those of P. borealis Lorbeer, is more common in
southern Poland, especially in the mountains (and in the south of Europe)
(Zielinski, 1987a; Szweykowski et al., 1995).

Comparative studies on the cryptic species of P. endiviifolia, conducted
by using isoenzymes and DNA markers, revealed further limitations of the
isoenzymatic analysis. The first two cryptic species were detected within this
taxon by using isoenzymes. They are referred to as a typical form and an aquatic
form. They differed in 10 of the 13 enzymatic loci analysed (77%) (Zielinski,
1987a). The typical form grows on a solid substratum, usually limestone, and
forms characteristic curled thalli (f. fabroniana), whereas the aquatic form occurs
in stagnant waters, often under the surface. An analysis of P. endiviifolia
populations with DNA markers confirmed the presence of the first 2 forms, later
called A and B, and revealed the existence of the third, well-headed cryptic
species C (Polok et al., 2005c). These three cryptic species of P. endiviifolia
differed in thallus morphology examined in culture (Polok et al., 2005c). Similarly
as cryptic species A, B, C of A. pinguis, also cryptic species of P. endiviifolia are
located in a small area in Poland and display ecological tolerance to varying
environmental conditions, constituting a genetic mechanism of their
differentiation.

The analysed enzymatic loci make a very limited and specific part of the
genome, so they do not always enable to detect the existing differences, as
illustrated by the example of cryptic species C of P. endiviifolia. Another well-
known example of conservatism of enzymatic loci in the complex of closely
related pine species, i.e. Pinus sylvestris L., P. mugo Turra, P. uliginosa Neumann
and P. uncinata Raymond ex A.DC., making it impossible to detect diagnostic
allozymes as well as to identify these taxa at the molecular level and to determine
relationships between them (Neet-Sarqueda, 1994; Prus-Glowacki et al., 1998;
Lewandowski et al., 2000). However, diagnostic DNA markers may be easily
generated in these species (Zielinski & Polok, 2005).

The markers compared in this study (RAPD, ISJ and katG), represent 3
distinct categories, amplifying random, semirandom and unique genome
sequences. All of these categories were found to be suitable for generating
species-specific bands. They revealed 19, 14 and 23 diagnostic loci, respectively.

Some authors discuss the application of RAPDs in taxonomy, because
several factors can influence their reproducibility, e.g. DNA purity,
concentration of the template, primers and magnesium chloride, type of primers
and Taq polymerase, thermocycler and reaction conditions (Edwards, 1998;
Harris, 1999; Rabouam et al., 1999). However, diagnostic RAPD markers have
made it possible to distinguish taxonomically difficult species in bryophyte
genera, e.g. Porella (Boisselier-Dubayle & Bischler, 1994), Polytrichum
(Zoubhair et al., 2000) or Sphagnum (Séstad et al., 1999; Polok et al., 2005a), as
well as in genera of vascular plants, e.g. Picea (Nkongolo et al., 2003), Astragalus
(Mehrnia et al., 2005), Polygonatum (Polok et al., 2005b; Szczecinska et al., 2006)
and members of Poaceae (Polok, 2005). Other works on the application of
RAPDs in taxonomy of liverworts also showed that this method can be used to
study the relationships between cryptic species, e.g. Pellia (Pacak et al., 1998;
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Polok et al., 2005¢) and Marchantia (Boisselier-Dubayle et al., 1995). The results
of our study indicate a high reproducibility of RAPDs when DNA of high purity
was used.

The semirandom, ISJ markers were used for the first time in studies on
Zea mays (L.) by Rafalski (1997). The markers were also used with success for
identification 3 P. endiviifolia cryptic species of (Polok et al., 2005¢) as well as
Rosa sp. (Nowak & Polok, 2005) and Polygonatum sp. (Polok et al., 2005b).

The katG markers, characterized by high conservativeness and a low
level of intraspecific polymorphism, are very useful for taxonomy. Their
effectiveness increases with an increase in the genetic distance between the
examined taxa (Zielinski & Polok, 2005). For instance, in three grass species,
Calamagrostis arundinacea (L.) Roth., Lolium perenne L. and Phragmites australis
(Cav.) Trin. ex Steud., the proportions of katG specific bands were: 65.2%, 47.5%
and 36.7%, respectively (Krzakowa et al., 2007). The katG markers were the only
system that allowed researchers to distinguish the majority of 7 species of the
genus Lolium, which was impossible to accomplish with AFLP, ITS and STS
markers (Polok et al., 2006). The katG markers were effective in identification of
species-specific bands in many angiosperms, including various grasses as well as
species of the genera Rosa and Polygonatum (Zielinski & Polok, 2005;
Szczeciniska et al., 2006). In addition, the katG system was successfully applied for
population and phylogenetic studies of Pinus cembra L. and P. pumila (Pall.)
Regel (Chmiel & Polok, 2005), P. sylvestris and P. mugo (Zielinski & Polok, 2005)
as well as liverwort species of the genus Pellia (Polok, unpublished data). Thus,
RAPDs, ISJs and katGs offer an efficient tool for species identification, including
cryptic species.

Apart from species-specific bands, also more variable bands were
detected, which may have a potential application while examining genetic
variation within cryptic species of the A. pinguis complex. Preliminary research
showed the highest degree of polymorphism in species B (36.7%), followed by A
(11.6%) and C (2%). The katG markers proved to be as effective as RAPD and
ISJ markers with regard to polymorphism detection within cryptic species, as well
as to the identification of diagnostic loci in these species. This may be due to a
considerable degree of similarity between cryptic species, which — as most closely
related — constitute the last segment of the genealogical tree, but also to the
selection of primers for the amplification of sequences complementary to the
bacterial katG gene, applied in the study. Tests performed on a variety of plant
species demonstrated that particular pairs of primers reveal both monomorphic
and polymorphic sequences (Polok, unpublished data). This may indicate a
different degree of conservatism of individual fragments of the bacterial katG
gene, whose sequences can be found in the analysed plants (Zamocky, 1994). An
example can be the presence of monomorphic sequences in C. arundinacea,
amplified with primers designed to the part of the katG gene coding for N-
termini of catalase-peroxidase (katG9, katG10, katG12) and polymorphic
sequences on C-termini of this protein (katG2, katG3, katG4) (Krzakowa et al.,
2007). In studies on A. pinguis, the primers used for katG4, katG5, katG6 and
katG1l sequences amplified the sequences encoding both N-termini and
C-termini of proteins.

The analysis of 12 putative enzyme loci in 1652 individuals of A. pinguis
species A, B and C from Poland (representing 14, 12 and 9 localities, respectively)
revealed a similar degree of polymorphism. In species A, the P value (percent of
polymorphic loci) was 28.6%, compared to 13.2% in B and 5.6% in C
(Baczkiewicz et al., unpublished data). The analysis of genetic similarity between
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the tested populations of A. pinguis clearly indicates that it exists at two levels:
intra- and interspecific. The populations within species A and C, as well as within
A. maxima, display genetic similarity exceeding /=0.900, while in the case of the
populations of species B this value is much lower and ranges from 0.728 to 0.803.
Genetic similarity between 4 cryptic species of A. pinguis is as low as 0.385 to
0.690. It is comparable to the values of genetic similarity between each of these
species and A. maxima. The results correspond to the grouping of these
populations carried out lately, on the basis of enzymatic data (Baczkiewicz et al.,
unpublished data), when genetic similarity within particular cryptic species was
very high, i.e. 0.96, 0.77, 0.96, respectively, while genetic similarity between them
varied from 0.219 to 0.361. Three categories of markers, RAPD, ISJ and katG,
revealed a comparable degree of genetic similarity between the cryptic species
analyzed in the study.

On the basis of DNA markers, the analysed species C and D are the
most distinct, whereas species A, B and A. maxima are more similar. This result
is different from isozyme results, where species A and D were the most distinct
(Baczkiewicz & Buczkowska, 2005). Results of the molecular study confirmed
our previous hypothesis (Baczkiewicz & Buczkowska, 2005) that A. pinguis
species D, occurring on the British Isles, is another cryptic species within the
A. pinguis complex. Genetic similarities between cryptic species of A. pinguis
are comparable or even lower than between other species. For example, genetic
similarities based on RAPD markers between other cryptic liverwort species
were 0.713-0.717 in the P. epiphylla (L.) Corda complex (Pacak et al., 1998) and
0.562-0.649 in the M. polymorpha complex (Boisselier-Dubayle et al., 1995).
Comparable values of genetic similarity were also reported between
morphologically recognized species in mosses, e.g. in the genera Polytrichum
(Zouhair et al., 2000), Sphagnum (Séstad et al., 1999), and in vascular plants,
e.g. Picea (Nkongolo et al. 2003), Pinus (Chmiel & Polok, 2005), Carica (Jobin-
Decor et al., 1997), Brassica (Lazaro & Aguinagalde, 1998), Lippia (Viccini et
al., 2004), and Polygonatum species (Polok et al., 2005b; Szczecinska et al.,
2006).

It is much more difficult to confirm the presence of a reproductive barrier
between species (including cryptic ones) in bryophytes than in higher plants.
Gametophytes growing under controlled conditions, e.g. in a greenhouse, often do
not produce generative organs of one or both sexes. Field investigations on
hybridization are also difficult or impossible to conduct in the case of allopatric
distribution of parental forms. Such a situation was observed in P. epiphylla
species S and N, which show allopatric distribution and produce no female
generative organs under culture conditions (Zielinski, unpublished data).
However, in 2 cryptic species of C. conicum species S and L, the analysis of
gametophytes from mixed populations revealed no recombinants, indicating a
complete reproductive isolation between them (Szweykowski et al., 1981;
Odrzykoski, 1987). No recombinants were detected between 2 cryptic species of
P. endiviifolia, the typical form A and the aquatic form B, in a mixed population
from the Tatra Mountains, being the only known locality of their co-occurrence
(Zielinski, 1987a). No recombinants between cryptic species in mixed populations
were recorded in A. pinguis, either (Baczkiewicz ef al., unpublished data). It
should be stressed that this species produces no generative organs under culture
conditions (Buczkowska et al., unpublished data).

The identification of cryptic species in bryophytes significantly extends
our knowledge in the field of population genetics, taxonomy and biogeography of
this group of plants (Stoneburner et al., 1991). When 2 alternative multilocus
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genotypes were detected for the first time in C. conicum with the use of allozymes,
it was assumed that they possibly constituted 2 excluding recombination systems
within this species (Szweykowski et al., 1981). A consequence of such an
interpretation of the reasons for the detected genetic variation in C. conicum
could be a considerable overestimation of variation parameters (P, A and H) in
this species. However, this hypothesis was excluded during further research, which
showed that these 2 alternative genetic systems belong to separate gene pools. On
the basis of numerous morphological and anatomical diagnostic features, species S
of C. conicum has acquired the status of species — C. salebrosum Szweykowski,
Buczkowska & Odrzykoski (Szweykowski et al., 2005). Morphological differences
have also been detected between P. epiphylla species S and N (Zielinski, 1987a),
P. endiviifolia species A, B, C (Polok et al. 2005c), as well as in the cryptic species
of A. pinguis (Buczkowska et al., 2005; Buczkowska et al., 2006). It can be
expected that as in the case of C. conicum, detailed biometric tests in other cryptic
species within bryophytes will be followed by concrete taxonomic decisions.

For example in C. conicum, P. endiviifolia and A. pinguis, thorough
population-based studies (including an analysis of the distribution range of
bryophyte species) showed that cryptic speciation takes place on both ecological
and geographical planes. As for the ecological perspective, it has been found that
the part of variation considered plasticity (Schuster, 1966) has a genetic basis and
results from the adaptation of particular cryptic species to a given habitat.
C. conicum is a good illustration of cryptic speciation of geographical character.
A total of 5 cryptic species of C. conicum have been identified (/=0.178-0.593), of
which L is limited to Europe only, A and C are endemic to North America, while
J occurs exclusively in Japan (Odrzykoski & Szweykowski, 1991). Species S is
common both in Europe and in the United States, where it forms sympatric
populations with species A. The cryptic species of P. endiviifolia reported from
Poland have different gene pools than P. endiviifolia in Japan (1=0.231-0.461),
which additionally can be differentiated into at least 2 cryptic species (/=0.692)
(Zielinski, 1987a). Species C of P. endiviifolia (Polok et al., 2005c) has been
recently recognized not only in Poland, but also in the Czech Republic (Sawicki
unpublished data). A. pinguis shows a similar mode of cryptic speciation. Thus, it
seems that broad geographical studies of the species at the DNA and
morphological level, including herbarium materials, may be of great taxonomic
value.
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