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Résumé – Emiliania huxleyi est un coccolithophore cosmopolite qui présente un haut degré
de variabilité génétique et physiologique aussi bien entre souches qu’entre les étapes de son
cycle de vie. Ici, nous avons examiné si les réponses au cuivre (Cu) et au stress oxydatif
varient selon l’origine environnementale ou l’étape du cycle de vie. Nous avons comparé les
réponses à des concentrations toxiques de Cu et à des expositions à court terme au peroxyde
d’hydrogène de douze souches (huit diploïdes et deux paires de souches où haploïdes and
diploïdes partagent la même base génétique) provenant de différentes origines
océanographiques. Les réponses mesurées comprenaient le taux de croissance, les proportions
de coccolithes malformés/incomplètes (souches diploïdes), la motilité (souches haploïdes), la
fluorescence variable (Fv/Fm, une mesure de la santé de photosystème), analyses de
cytométrie en flux des pourcentages de cellules vivantes et l’accumulation des dérivés
réactives de l’oxygène (DRO), et les activités des enzymes ascorbate peroxydase (AP) et
glutathion peroxydase (GP). Bien qu’une importante variabilité ait été observable entre les
réponses au stress de ces souches, aucune différence statistique n’a été détectée lorsque les
souches ont été regroupées par origines. Dans les deux paires diploïdes/haploïdes, les
diploïdes ont montré une plus grande sensibilité à l’inhibition de la croissance par Cu que
leurs haploïdes correspondants, bien que cette différence n’était significatif que dans le cas
de la paire diploïde-haploïde qui est issue d’un isolât de la mer de Tasman (RCC1216 /
RCC1217). Les diploïdes accumulent rapidement DRO en réponse à une exposition aiguë à
Cu, alors que l’accumulation de DRO dans haploïdes était beaucoup plus faible. Notablement,
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il n’y a eu pas des différences dans les DRO induites par Cu entre les diploïdes sensibles et
résistantes, ou entre les haploïdes sensibles et résistantes. Les différences de sensibilité au Cu
entre les souches ont été reflétées dans les différences d’activité AP constitutive, mais aucune
différence entre les souches dans l’activité GP constitutive ou induite n’a été détectée. Les
différences dans l’activité AP constitutive, mais non dans l’activité GP induite par Cu,
reflètent la sensibilité au Cu. Dans l’ensemble, nos résultats montrent une variabilité intra-
spécifique élevée parmi les génotypes et les phases du cycle de vie de E. huxleyi, ce qui
pourrait refléter en partie les différences dans la tolérance au stress oxydatif.

Stress par cuivre / coccolithophores / Emiliania huxleyi / réponse souche-dépendant /
cycle de vie

Abstract – Emiliania huxleyi is a cosmopolitan coccolithophore exhibiting a high degree of
genetic and physiological variability among strains and life-cycle stages. Here we investigated
whether responses to copper (Cu) toxicity and oxidative stress varied by environmental origin
or life cycle stage. We compared responses to toxic concentrations of Cu and short-term
exposure to hydrogen peroxide of twelve strains (eight diploids and two pairs of strains
where haploids and diploids shared a genetic background) from different oceanographic
origins. Measured responses included growth rate, proportions of malformed/incomplete
coccoliths (diploid strains), motility (haploid strains), variable fluorescence (Fv/Fm, a measure
of photosystem health), flow cytometry assays of the percentages of live cells and the
accumulation of intracellular reactive oxygen (ROS), and the activities of ascorbate peroxidase
(AP) and glutathione peroxidase (GP). Although a large and significant variability was
observable in Cu sensitivity among strains, no statistical differences were detected when
strains were grouped by their origins. In the two diploid/haploid pairs, the diploids showed
more sensitivity to growth inhibition by Cu than their corresponding haploids, although this
was only large and significant in the case of diploid-haploid pair that originated from a
Tasman Sea isolate (RCC1216/RCC1217). The diploids accumulate ROS rapidly in response
to acute exposure to Cu, while ROS accumulation in haploids was much lower. Notably, there
was no difference in Cu-induced ROS between the sensitive and resistant diploids or between
the sensitive and resistant haploids. Differences in Cu-sensitivity between strains were
reflected in differences in constitutive AP activity, but no differences between strains in
constitutive or induced GP activity were detected. Overall, our results show a high intra-
specific variability among genotypes and life-cycle phases in E. huxleyi, which might partly
reflect differences in tolerance to oxidative stress.

Copper stress / coccolithophores / Emiliania huxleyi / strain-specific responses / life cycle

INTRODUCTION

Emiliania huxleyi (Lohmann) Hay et Mohler, is one of the most widely
distributed microalgae as this morph-species is found in most marine surface waters
outside the polar oceans (Brown & Yoder, 1994; Winter et al., 1994). This
coccolithophore, capable of forming dense and extensive blooms in many temperate
systems (Paasche, 2002; Moore et al., 2012), plays an important role in carbon and
sulfur biogeochemical cycles through calcification and dimethylsulfoniopropionate
(DMSP) production (Keller 1989; Holligan et al., 1993; Westbroek et al., 1993;
Paasche 2002).
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Strains of Emiliania huxleyi exhibit a high degree of intraspecific phenotypic,
genetic, and genomic variability. Physiological variability has been demonstrated in
traits or responses including growth rates (Brand, 1982), temperature-dependence of
growth rates (Brand, 1982; Zhang et al., 2014), calcification (Young & Westbroek,
1991; Cubillos et al., 2007), susceptibility to viruses (Bidle et al., 2007), responses
to nutrient limitation (Oviedo et al., 2014), responses to ocean acidification (Langer
et al., 2009; Meyer & Riebesell, 2015), and in particulate organic and inorganic
carbon contents, C:N, Mg:Ca and Sr:Ca ratios, (Blanco-Ameijeiras et al., 2016).
This phenotypic variability reflects high genetic (Medlin et al., 1996; Iglesias-
Rodriguez et al., 2006) and genomic variability (Kegel et al., 2013; Read et al.,
2013; von Dassow et al., 2015). Most of these studies in E. huxleyi have focused on
a few strains and only the diploid stage. However, this species alternates between
the calcified non-motile diploid stage and a motile haploid stage that is not calcified,
with both stages potentially capable of unlimited asexual reproduction (Klaveness,
1972; Green et al., 1996; von Dassow et al., 2009). Nevertheless, the works which
have compared both stages have pointed out important ecophysiological and
transcriptomic differences (von Dassow et al., 2009; Rokitta et al., 2011), including
responses to light acclimation (Houdan et al., 2005; Rokitta et al., 2011; Rokitta &
Rost, 2012), nitrate and phosphate starvation (Rokitta et al., 2014, Rokitta et al.,
2016), elevated pCO2 (Rokitta et al., 2012; Rokitta & Rost, 2012), and viruses
(Frada et al., 2008). Furthermore, a recent work has revealed that many E. huxleyi
strains have lost essential genes required in the haploid phase for formation of
flagella (von Dassow et al., 2015). Interestingly, the tendency to lose the capacity to
form flagellated cells is almost exclusively observed in strains originating from open
ocean conditions, whereas strains isolated from coastal environments tend to maintain
the capacity to complete the full life cycle. It has been suggested that different
adaptive strategies have permitted this single morpho-species to colonize distinct
ocean environments (Read et al., 2013).

Among the environmental factors that vary the most in the ocean and that
might drive local adaptations are micronutrients such as metals. Pronounced
differences between the trace metal requirements of coastal and oceanic diatoms
isolates of the same genera have been shown, emphasizing a significant habitat
effect (Maldonado & Price, 1996; Annett et al., 2008; Guo et al., 2010). Metals such
as copper (Cu) are particularly intriguing because they are required for growth at
low concentrations but become toxic at high concentrations (Pinto et al., 2003). The
high variability of Cu between open ocean and coastal waters is due mainly to the
anthropogenic input from land and rivers in the latter (Moffett, 1995; Lee & Correa,
2005; Andrade et al., 2006; Nogales et al., 2011). Aeolian input of Cu can also be
important, and has been implicated as a factor in repressing phytoplankton growth
at large scales (Jordi et al., 2012). Those authors showed that the input of Cu from
aerosols was related to negative changes in satellite chlorophyll-a (Chl-a) in the
Mediterranean and proposed that similar processes could even occur in major regions
of the Indian, Atlantic, and Pacific oceans. Meanwhile, in the pico-cyanobacteria
Synechoccus, coastal strains have been found to have genomic islands conferring
higher Cu resistance compared to oceanic strains (Stuart et al., 2013), supporting the
idea that tolerance to metal-toxicity may be a trait that can be subject to strong
selection in marine phytoplankton.

In phytoplankton, Cu plays an important role as cofactor in a number of
enzymes, such plastocyanin, cytochrome c oxidase, Cu/Zn superoxide dismutase
(SOD) and some high-affinity Fe transport systems (Raven et al., 1999; Maldonado
et al., 2006; Peers & Price, 2006). However, Cu is toxic at high levels due to its
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high reactivity and ability to disturb redox balance leading to oxidative stress,
characterized by increased production of reactive oxygen species (ROS) (Erickson,
1972; Harrison et al., 2007; Knauert & Knauer, 2008). The ROS over-production
under Cu excess is a similar response to other stressor conditions, such as viral
infection (Evans et al., 2006), nutrient starvation (Allen et al., 2008), desiccation
(Contreras-Porcia et al., 2011), and UV and high light irradiation (Mella-Flores et
al., 2012). Either directly or through ROS, Cu can induce effects on various
biochemical and physiological processes, such as inhibition of cell division (Prasad
et al., 1998; Lage et al., 2001), photosynthesis (Perales-Vela et al., 2007), respiration
(Xia & Tian, 2009), synthesis of pigments (Rijstenbil et al., 1994), and cell motility
(Lage et al., 2001). Several organisms have developed antioxidant responses to cope
with Cu stress, including the use of antioxidant enzymes (ascorbate peroxidase,
glutathione peroxidase, catalase, among others), water-soluble antioxidant
compounds, and lipid-soluble antioxidant molecules (Foyer et al., 1997; Noctor &
Foyer, 1998). Thereby, sensitivity and survival capacity will depend upon the amount
of ROS produced and their efficiency in scavenging these oxygen species.

The sensitivity to Cu is highly variable among microalgae. It is often
determined by measuring the effective Cu concentration that inhibits 50% microalgal
growth (IC50), and by this measure cyanobacteria and diatoms are reported to be
especially sensitive (<1 μg Cu L-1) (Brand et al., 1986; Sunda & Huntsman, 1995;
Levy et al., 2007). On the other hand, the Chlorophyta Dunaliella tertiolecta and
Parachlorella kessleri are very resistant (>500 μg Cu L-1) (Levy et al., 2007;
Nugroho & Frank, 2011). Tolerance ranges may be due to morphological and
structural factors such as size, cell volume, and presence/absence of a cell wall or
mucilaginous sheets, as well as physiological or biochemical mechanisms for metal
tolerance or ability to deal with elevated ROS induced by metals (Levy et al., 2007).
In this context, E. huxleyi exhibits a moderately high tolerance to Cu (>10 μg Cu
L-1) (Brand et al., 1986; Levy et al., 2007).

The aim of this work was to test if strains of Emiliania huxleyi isolated
from distinct ocean environments may display different degrees of responses to Cu
stress and whether responses depend on life cycle stage. Furthermore, we evaluated
if these responses are correlated to stress induced by hydrogen peroxide, as a
universal and direct oxidative stressor. For that, different aspects of Cu toxicity were
evaluated, such as IC50 for inhibition of growth, photosynthetic efficiency (Fv/Fm),
intracellular ROS accumulation, motility, formation of coccoliths, and antioxidant
activities of the enzymes ascorbate peroxidase and glutathione peroxidase involved
in ROS scavenging (Lesser, 2006).

MATERIAL AND METHODS

Strains

Twelve strains of Emiliania huxleyi were used in this study, among which
ten were diploid and two were haploids (Table 1). Briefly, six strains were isolated
from South East Pacific waters (three from coastal waters and three from oceanic
waters) and four were obtained from the Roscoff Culture Collection (RCC) with
origins in the Tasman Sea and the Mediterranean Sea. From the RCC strains, the
two Tasman Sea strains originate from the same genetic background, that is, a clonal
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diploid (2N) strain (RCC1216) that formed haploid (1N) cells in culture (RCC1217).
Similarly, Mediterranean strains B4 and F2 are derived strains isolated from the
original RCC1855 strain when spontaneously flagellated cells appeared in the culture
(B4). Then, from B4, new calcified cells appeared and were isolated giving origin
to F2. All strains are currently kept in the South Eastern Pacific Algae Collection,
Pontificia Universidad Católica de Chile.

Culture conditions

Cultures were grown at 14°C ± 1°C in a seawater-based medium enriched
with 176 μM nitrate, 8 μM phosphate, trace metals at half the concentrations of K/2
medium (Keller & Guillard 1985; Keller et al., 1987), and full-strength K/2 vitamins.
Seawater was collected from the central Chilean coast during winter, aged for several
months, and sterile-filtered at 0.22 μm (Merk Millipore Corporation, Billerica, MA)
before being used in the experiments. All experiments were performed under cool
white fluorescent light illumination with a photoperiod of 12:12 light-dark cycle and
irradiance of 45-50 μmol photons m-2 s-1.

Copper toxicity bioassays

The toxicity of Cu to 12 Emiliania huxleyi strains was determined using
growth-rate inhibition bioassays. Composition of the medium was as described
above with some further modifications: seawater was treated with active carbon to
eliminate dissolved organic matter in the water, trace metals were diluted at 1/50 the
concentration of K/2 and no Cu was added. Preliminary experiments confirmed that
cultures showed no difference in growth between media with the standard or the
lower trace metal concentrations, at least at cell densities up to several hundred cells
mL-1, much higher than the maximum cell densities reached in these experiments.
Furthermore, the EDTA concentration was decreased further in the assays (10 μM,
final concentration in medium) in order to diminish the chelating effect of EDTA on
copper. Trace metal clean techniques were used throughout the whole experiment
period, following EPA protocols (EPA, 1996). All the glass and plastic materials
used were soaked overnight in 5% Extran detergent (Merk Millipore Corporation,
Billerica, MA) to remove organic matter, washed with distilled water, and soaked in
10% HCl for at least 24 h before being rinsed abundantly with Milli-Q water and
stored in acid-cleaned plastic bags until use. Bioassays were carried out in 100 mL
borosilicate Erlenmeyer flasks containing 50 mL of medium with initial cell density
of 3.500 cells mL-1. Inoculations were provided from a culture in exponential growth
phase after three washes of cells by centrifugation (500 × g for 10 min the first wash
and 200 × g for 10 min the following) in a centrifuge with a swinging bucket rotor
(Model 5702, Eppendorf, Hamburg, Germany) and with re-suspension in sterile
medium without copper. Cells were incubated for 96 h (and until 144 h for the
strains with slower growth rates) with seven increasing nominal Cu concentrations
(0, 1.5, 4, 10, 20, 45 and 100 μg Cu L-1) prepared from cupric chloride standard
solution (Merk Millipore Corporation, Billerica, MA). These concentrations were
selected based on a wide-range preliminary test (data not shown) and on nominal
concentrations reported to inhibit growth in E. huxleyi and other phytoplankton
groups (Brand et al., 1986; Levy et al., 2007; Perales-Vela et al., 2007; Manimaran
et al., 2012). During growth tests, flasks were rotated within the culture chamber
and gently mixed every day in order to ensure sufficient gas exchange and reduce
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cell sedimentation. Growth rate was monitored daily by fluorometric measurements
of in vivo chlorophyll a fluorescence using a handheld fluorometer (AquaFluor,
Turner Designs, San Jose, CA, USA). Direct cells counting were also performed
using an improved Neubauer chamber to confirm trends observed by chlorophyll
fluorescence (data not shown). Samples were taken at the end of the essays for
Scanning Electronic Microscopy (SEM) observations, photosynthesis activity
measurements, and motility determination. All bioassays were performed in
triplicates.

Growth parameters and IC50 calculations

The growth rate (μ) was calculated during exponential phase by fitting a
linear regression curve to the logarithmic transformed cell fluorescence over time:
F=F0 eμt, where, F0: Fluorescence at time zero and F: Fluorescence at time t (days).
The use of cell fluorescence as growth parameter was checked by direct cell counting
on a sub-set of experiments, yielding very similar growth rates and nominal IC50
values (data not shown). The 96h-IC50 values were obtained for each strain by fitting
growth inhibition data to a dose-response equation using Prism 6.0h software
(GraphPad Software, Inc., San Diego, California, USA). Previously to the fitting,
data were first transformed to convert the X values (Cu concentration) to logarithms
and then normalized Y values (Chl fluorescence) by defining 0 and 100 % of the
response as the minimum and maximum values of each data set.

Because the growth rate of controls presented a wide variation among
strains and this might potentially affect IC50 calculations for more slowly growing
strains, IC50 values were also calculated based on the day when controls had
completed a minimum of 3 generations (doublings), and exposure time was
constrained between a minimum of 96 h and a maximum of 144 h (MinEx-IC50),
restrictions determined from preliminary experiments to keep cell densities below
10% of maximum achieved during stationary phase and thus avoid nutrient limitation
(not shown).

Effect of copper on coccolith morphology and motility

Morphology of coccoliths was evaluated by SEM observation on the last
point of the growth-rate inhibition bioassays in selected diploid strains. One mL of
cell suspension of each strain was sampled and fixed by addition of 0.1 volumes of
100 mM sodium borate pH 8.7 solution containing 10% formaldehyde and 0.5%
glutaraldehyde (von Dassow et al., 2012) and kept at 4ºC until processing. Samples
were then filtered onto polycarbonate Isopore membrane filters (TSTP or GTTP of
1.2 μm, Millipore, MA, USA). Small sections of dried filter samples were mounted
on SEM supports, sputter-coated with gold and analyzed under a Hitachi Tabletop
Microscope 3000 (Hitachi High-Technologies Corporation, Tokyo, Japan). Percentage
of complete and incomplete/malformed coccoliths was calculated by observing a
minimum of 49 (F2, 100 μg Cu L-1) and maximum of 416 coccoliths (RCC1216,
0 μg Cu L-1).

Motility was evaluated by light microscopy at the last point of the growth-
rate inhibition bioassays for haploid cultures by quantifying the proportion of motile
cells in 12-30 random fields at 10X (CKX41 inverted microcope, Olympus, Tokyo,
Japan). We note that the movement of cells was not fast enough to escape the
observation field during the counting. Only the B4 strain was evaluated since cells
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from RCC1217 strain, the other haploid representative, did not show substantial
motility in control culture conditions.

As both SEM and motility analyses were highly time intensive, we focused
on the 0, 10 and 100 μg Cu L-1 treatments, picking the extreme values of the range
tested and an intermediate value that was above the IC50 for growth inhibition for
the most sensitive strains but below the IC50 value for the most resistant strains.

Peroxide stress assays

In order to evaluate short-term response to direct oxidative stress, cells
from selected strains representative for coastal (CHC350, CHC366) and oceanic
conditions (CHC524 and CHC299), and haploid (B4, RCC1217) and diploid life
cycle stages (F2, RCC1216) were subjected to H2O2 stress by incubation in K/2
medium with three H2O2 concentrations (60, 250 and 500 μM). The peroxide
concentrations were chosen based on preliminary tests and on concentrations
previously reported to affect microalgae (Evans, 2006; Ross et al., 2006; Mella et
al., 2012). H2O2 bioassays were carried out in 250 mL flasks containing 150 mL of
medium with a cell density between 150,000 and 200,000 cells mL-1. After incubation
for 30 min in standard culture conditions, the effect of these treatments on the PSII
quantum yield (Fv/Fm) was measured as described below.

Variable fluorescence

The variable fluorescence parameter PSII quantum yield (Fv/Fm) was
determined using the AquaFluor handheld fluorometer. After 20 min of dark
adaptation in controlled culture conditions, an excitation light (460 nm) was applied
on a 2 mL aliquot in order to measure the basal fluorescence (F0). The maximal
fluorescence Fm was determined following the addition of 50 μM of the PSII inhibitor
3-(30, 4-dichlorphenyl)-1,1-dimethylurea (DCMU), which blocks electron transport
from PSII, following the methodologies used in early studies of variable fluorescence
(Samuelsson & Oquist, 1977; Cullen & Renger, 1979; Kromkamp & Forster, 2003).
The PSII quantum yield was calculated as: Fv/Fm = (Fm-F0)/Fm.

Cell viability assay

In order to evaluate if responses to Cu exposure were associated to cell
death, we evaluated cell viability on three strains, two diploids (F2 and RCC1216)
and one haploid (RCC1217) using the fluorescent probe fluorescein diacetate (FDA,
ThermoFisher Scientific, San Jose, CA). This probe accumulates in cells as
fluorescein if metabolic (esterase) activity is present and the plasma membranes is
intact (Selvin et al., 1989; Li et al., 2011). The FDA staining protocol was adapted
from Jochem (1999) and Li et al. (2011). A stock solution of 5 mg mL-1 FDA was
prepared in DMSO and a working solution was obtained by diluting the stock
solution 20x in Milli-Q water. For the assay, selected strains were submitted to 0
and 100 μg L-1 Cu for 24 h in triplicates. After this time, samples were incubated
in the dark for 20 min with the working solution in a 4-fold dilution, and FDA
staining was measured immediately by flow cytometry. Fluorescence of FDA and
chlorophyll were measured, respectively, at 530 nm (40 nm bandpass) and 692 nm
(40 nm bandpass) on an InFlux flow cytometer (Becton, Dickinson and Company,
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San Jose, CA) with excitation by 488 nm laser. Autofluorescent calibration particles
(3 μm UltraRainbow, Spherotech, Lake Forest, IL, USA) were used to align optics
and standardize instrument performance. Signals were analyzed with the FlowJo
software (Ashland, Oregon, USA). Emiliania huxleyi cells were discriminated on the
basis of their red autofluorescence (692 nm). A threshold value of green fluorescence
for discriminating FDA-positive (live) cells was determined based on the 95th

percentile fluorescence value of cells killed by chemical fixation prior to FDA
staining.

Detection of antioxidant enzyme activities

To measure the constitutive and Cu-induced activities of the antioxidant
enzymes ascorbate peroxidase (AP) and glutathione peroxidase (GP), cultures in
triplicate were grown in 500 mL volumes to a cell concentration of 100,000 cells
mL-1 and exposed to 0 and 100 μg Cu L-1. After 24 h, the totality of the culture was
harvested by centrifugation at 1,000 × g for 10 min at 4ºC followed by a second
centrifugation in microtubes (10,000 × g, 1 min at 4ºC). Cells pellets were frozen in
liquid nitrogen and kept at -80ºC until analysis. Re-suspended cells were sonicated
three times in 2 mL of 0.1 M phosphate buffer pH 7.0 for 10 s in order to disrupt
cells. Protein concentration was obtained using the bicinchoninic acid assay (Smith
et al., 1985) by measuring directly from the sonicated cells. The ascorbate peroxidase
(AP) activity was determined as described previously (Contreras et al., 2005). The
reaction mixture contained 0.1 M phosphate buffer pH 7.0, 800 mM ascorbate (ASC)
and 16 mM H2O2. After the addition of ASC, its consumption was determined at
290 nm for 5 min and the activity was calculated using the extinction coefficient of
ASC (e= 2.8 mM-1cm-1). The glutathione peroxidase (GP) activity was measured as
described by (Ursini et al., 1985). Briefly, the reaction mixture contained to 0.1 M
phosphate buffer, pH 7.0, 200 mM GSH, 8 mM H2O2, 90 mM NADPH, and 1 U of
glutathion reductase (Sigma). After the addition of NADPH, its oxidation was
monitored at 340 nm for 5 min, and GP activity was calculated using the extinction
coefficient of NADPH (56.2 mM-1cm-1).

Intracellular ROS accumulation

ROS accumulation was evaluated on four strains, two haploids (RCC1217
and B4) and two diploids (RCC1216 and F2) by the fluorescent probe 5-(and-6)-
chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate (CM-H2DCFDA,
ThermoFisher Scientific, San Jose, California, USA) using a modification of the
procedure described by (Malanga & Puntarulo, 1995). CM-H2DCFDA is a non-
fluorescent molecule that freely permeates the plasma membrane and is hydrolyzed
in the cytosol to form the DCFH carboxylate anion (Gomes et al., 2005; Kalyanaraman
et al., 2012). Oxidation results in the formation of fluorescent DCF, which is
maximally excited at 495 nm and emits at 520 nm (Kalyanaraman et al., 2012) and
can be measured by flow cytometry. For experiments, a fresh 1 mM stock solution
was made immediately prior to use by dilution in 100% ethanol and a final
concentration of 5 μM was used (Evans et al., 2006). Cultures were incubated either
in the presence of CM-H2DCFDA alone, with CM-H2DCFDA and 25 μg Cu L-1 or
with CM-H2DCFDA and 250 μg Cu L-1. These concentrations were selected after a
preliminary experiment with strains RCC1216 and RCC1217 using the same Cu
concentrations as for the enzyme detection experiments (0 and 100 μg Cu L-1).
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Triplicate analyses were made for all treatments, and samples were taken at 30, 60
and 90 min after the start of treatment for cytometer analysis recording green
(530 nm) fluorescence of all red-fluorescent (chlorophyll-containing) cells.

Statistical analysis

Nominal IC50 values among strains were compared using a One-way
Analysis of Variance (ANOVA) using the best-fit value obtained from the nonlinear
regression (Mean=logIC50; SEM=Standard Error and N=degrees of freedom+1,
following the indications given by the GraphPad Software), followed by a Tukey’s
test for multiple comparisons. Differences for motility, PSII quantum yield, enzyme
activity and ROS production were evaluated by One-way ANOVA followed by a
Tukey’s test for multiple comparisons. Percentage of normal coccolith morphotypes
and incomplete/malformed coccoliths were compared using a Chi-square test.
Differences in Cu-induced ROS production among strains was analyzed in two
ways: the mean fold-increase in CM-H2DCFDA fluorescence (compared to stained
but untreated control samples for each strain) was log2-transformed for performing
a two-way ANOVA. The proportion of high CM-H2DCFDA fluorescent cells (>95th

percentile of no Cu controls) was evaluated by running a two-way ANOVA followed
by a Tukey’s test for multiple comparisons (with a significance threshold p<0.05
after adjustment for multiple comparison). In both cases we focused on the
intermediate time point of 60 min of Cu exposure. Similar trends were observed in
both statistical tests of Cu-induced ROS accumulation, so for clarity only the first
approach is presented. All analyses were conducted using Prism 6.0 software
(GraphPad Software, La Jolla, CA, USA).

RESULTS

Effects of Cu on culture growth

Growth rates in control conditions after 96 h of culture during the
toxicological bioassays, were highly variable among strains (Table 2). Compared to
the mean growth rate in control conditions across all strains (0.598 ± 0.180 day-1),
the three Open Pacific strains showed lower growth rates (Table 2, average growth
rate across the three strains was 0.367 ± 0.095 day -1), while the diploid and haploid
Mediterranean strains showed higher growth rates (0.760±0.032 and 0.883±0.028 d-1,
respectively). These differences resulted in the fact that for the same exposure time
(e.g. 96 h) different numbers of generations were observed depending of the strain
(Table 2). For IC50 results we present principally the results from the MinEx-IC50
calculations as it minimizes differences in Cu-response that may result from growth-
rate differences, however, we note that the general patterns were similar for the two
types of IC50 calculations. The strain CHC428 could not be included in the analysis
as it did not reach the generation threshold.

Copper had an inhibitory effect on the growth for all strains with some
important differences (see Table 3). The Mediterranean Sea strains F2 and B4
exhibited stronger sensitivity to Cu, with MinEx-IC50 values of 8.15 and 10.46 µg
Cu L-1 , respectively. These values were significantly different (all cases p<0.05)
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from the more resistant strains, RCC1217, CHC350, CHC299 and CHC307, which
showed MinEx-IC50 values over 20 μg Cu L-1 and up to 50.87 in the case of CHC307.
Between those extremes, a range of sensitivities between MinEx-IC50 values of
12.35 and 16.69 µg Cu L-1 was observed for the rest of the strains, with no significant
differences among them (p>0.05). No significant differences were observed when
strains were grouped by oceanographic region, reflecting the wide variability
observed in strains from same origin (Table 3, Fig. 1).

Tests using the live-dead stain FDA were performed in order to determine
whether the variability among strains in sensitivity to growth inhibition by Cu might
be due to differences in Cu-induced cellular mortality. For these tests we selected
the diploid strain that displayed the highest sensitivity (F2) and a strain that displayed
a lower sensitivity (RCC1216), as well as the haploid counterpart of RCC1216
(RCC1217) as it was among the most resistant strains we had tested. Results show
that growth inhibition by Cu was not due to Cu-induced cell mortality, as there were
no significant differences between controls and treatment with a high Cu concentration
(100 µg L-1) or among strains, with the percentage of cells judged to be viable
always near 100% after 24 h exposure to high Cu (Fig. 2).

Fig. 1. MinEx-IC50 from every strain (upper side) and average MinEx-IC50 obtained in strains from
Mediterranean Sea (M.S., white bar), Tasmanian Sea (T.S., light grey bar), coastal (dark grey bar) and
oceanic (black bar) regions (lower side). Data represents mean ± standard deviation (n = 3).
Circles=diploid strains, triangle=haploid strains. A one-way ANOVA followed by Tukey posthoc test
was performed to compare difference among strains (F10, 209 = 8.947, p<0.0001). Means that share one
or more letters are not significantly different from each other according to the Tukey’s test (p>0.05).
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Cu-induced changes in coccolith morphology and motility

Copper had a severe effect on coccolith morphology in Emiliania huxleyi
cells (Fig. 3 and 4). Cells of all strains exposed to 100 μg L-1 of Cu exhibited large
numbers of incomplete and malformed coccoliths, while exposure to 10 μg L-1 Cu
resulted in responses that were variable among strains (Fig. 3 and 4). Significant

Fig. 2. Percentages of metabolically active cells (high FDA fluorescence) in three strains of Emiliania
huxleyi after 24-h of exposure to 100 μg L-1 Cu. Bars represents mean ± standard deviation (n = 3).
There were no significant effects of strain (p=0.94) or Cu-treatment (p=0.07) according to a two-way
ANOVA.

Fig. 3. External morphology of selected Emiliania huxleyi strains treated with 0, 10 and 100 μg Cu L-1
after 96 h of growth inhibition bioassays (Scale bars = 1 µm).
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differences were identified between control and the 100 μg L-1 Cu treatment for all
strains. The F2 strain was the most affected, with almost 100% of coccoliths
malformed or incomplete in the highest copper treatment (Fig. 3 and 4). Likewise,
cells exposed to 10 μg L-1 of Cu exhibited significant differences from controls, with
the exception of the RCC1216 strain, for which less than 15% of observed coccoliths
were malformed or incomplete. Significant differences between both Cu treatments
were observed only for RCC1216 and F2 strains. However, when all strains were
included, no significant correlations were detected between the IC50 values for
growth inhibition and the percentages of malformed coccoliths at either 10 μg L-1
or 100 μg L-1 (p>0.05, data not shown).

Copper exposure also strongly inhibited cell motility in the haploid stage
(strain B4) (Fig. 5). Upon exposure to 100 μg L-1 of Cu, motility was almost
completely absent. Although motility was somewhat less affected at 10 than
100 μg L-1 of Cu (≈80% of non-motile cells), this difference was not significant
(p>0.05), suggesting that near maximal inhibition was achieved at the lower
concentration.

Responses of variable fluorescence to Cu and peroxide stress

Effects of increasing Cu on PSII quantum efficiency (Fv/Fm) were not
consistent among strains. For most of the strains tested (exemplified by RCC1217
shown in Fig. 6; upper panel), no effects of Cu were detected even at the highest
concentration tested (100 µg L-1). However, high concentrations of Cu (45 and
100 µg L-1) did cause a significant drop in two strains (ca. 50%), which included
CHC350 of coastal origin (Fig. 6; central panel), and the open ocean strain CHC299.

Fig. 4. Percentage of normal coccolith morphotypes (white) and incomplete/malformed coccoliths (grey)
of selected Emiliania huxleyi strains treated with 0, 10 and 100 μg Cu L-1 after 96 h of growth inhibition
bioassays. Means with different letters are significantly different (Chi-square test, p< 0.01).
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Fig. 5. Percentage of non-motile cells of B4 Emiliania huxleyi strain after 96 h of growth inhibition
bioassays with 0, 10 and 100 μg Cu L-1. Data represents mean ± standard deviation (n = 3). A one-way
ANOVA followed by Tukey posthoc test was performed to compare difference between strains (F2, 6 =
45.07, p<0.0005). Means that share one or more letters are not significantly different from each other
according to the Tukey’s test (p>0.05).

Fig. 6. Maximal PSII quantum yield (Fv/Fm,
as % of controls) at the end of Cu bioassays
of growth of RCC1217 (upper panel) and
CHC350 (central panel). (Lower panel):
Correlation between MinEx-IC50 results from
the copper bioassays and maximal quantum
yield (Fv/Fm, calculated as percentage of
control values) obtained in presence of 100 μg
Cu L-1 at final time of the copper bioassays
(r2=0.00195; p=0.903). For a and b data
represents mean ± standard deviation (n = 3).
A one-way ANOVA followed by Tukey
posthoc test was performed to compare
difference between strains (F5, 11 = 15.51,
p<0.0001). Means that share one or more
letters are not significantly different from each
other according to the Tukey’s test (p>0.05).
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When all strains were considered, there was no correlation between growth inhibition
by Cu and the effect on Fv/Fm (Fig. 6; lower panel).

To rule out that the possibility that the lack of a consistent Cu response of
Fv/Fm seen in long-term growth experiments was the result of acclimation, we
selected the most sensitive diploid strain (F2) and the moderately resistant diploid
strain (RCC1216) for testing the effects of short-term exposure. Although treatment
with 100 μg L-1 Cu induced a modest initial drop in Fv/Fm compared to the control
within the first 2 h (to 87±0.74% in F2 and 95%±1.16% in RCC1216), by 24 h there
was no difference between Cu-treated and control samples in either strain (p>0.0;
data not shown).

Variable fluorescence was diminished by 30 min exposure to H2O2. When
cells were exposed to 60 µM H2O2, some strains were resistant, while exposure to
500 µM H2O2 resulted in a strong decrease in Fv/Fm. At a dose of 250 µM H2O2,
an effect on the PSII quantum efficiency was observed for all strains except RCC1217
(Fig. 7; upper panel). A positive correlation was observed between the MinEx-IC50
values from growth inhibition experiments and Fv/Fm obtained after 30 min of
exposure to 250 mM of H2O2 (Fig. 7; lower panel).

Fig. 7. Maximal PSII quantum yield (Fv/Fm, as % of controls) of selected strains after 30 min of
exposure to 60, 250 and 500 μM of H2O2 (upper panel). Data represents mean ± standard deviation
(n = 3). Correlation between MinEx-IC50 from the copper bioassays of Emiliania huxleyi strains and
the Photosystem II maximal quantum yield (Fv/Fm, calculated as percentage of control values) obtained
after 30 min of exposure to 250 mM of H2O2 (lower panel) (r2=0.78499; p=0.003).
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Basal and Cu-induced antioxidant enzyme activities

Antioxidant enzyme activities were compared between the most sensitive
diploid strain F2 and the moderately resistant diploid strain RCC1216. Basal AP
activity was approximately 4-fold higher in the moderately resistant strain RCC1216
compared to the sensitive strain F2. However, there was no further induction of AP-
activity after 24 h of Cu exposure (Fig. 8; upper panel). Basal GP activity was
similar between the two strains, and was increased by ca. 50% after 24 h of Cu
exposure (Fig. 8; lower panel).

We were not able to perform this assay on haploid cells. Preliminary
experiments showed large losses of the non-calcified haploid cells during initial the
centrifugation step. We attempted filtration, but the comparatively higher vacuum
pressures and times needed to concentrate haploid cells sufficiently raised the
concern that some cell lysis of these unprotected cells would lead to results not
being comparable to those of calcified diploid cells.

Changes in the ROS levels as response to acute exposure to excess Cu

We tested whether the differences in sensitivity to growth inhibition by Cu
reflect differences in the sensitivity to acute Cu-induced ROS accumulation. For this
experiment, we selected the diploid strains F2 and RCC1216 and the corresponding
haploid strains B4 and RCC1217, as strain F2 exhibited the highest sensitivity to

Fig. 8. Activities of the antioxidant enzymes
Ascorbate peroxidase (AP, upper panel) and
Glutathione Peroxidase (GP, lower panel) for
F2 (white bars) and RCC1216 (grey bars)
Emiliania huxleyi strains exposed to control
medium and 100 μg Cu L-1. Data represents
mean ± standard desviation (n = 3). For each
of the figures, a one-way ANOVA followed by
Tukey posthoc test was performed to compare
difference between strains and treatments (AP:
F3, 8 = 22.16, p<0.0005; GP: F3, 8 = 7.421,
p<0.05). Means that share one or more letters
are not significantly different from each other
according to the Tukey’s test (p>0.05).
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growth inhibition by Cu while strain RCC1217 exhibited among the highest
resistance to Cu. Concentrations of 25 µg Cu L-1 (as intermediate among the IC50
values for growth inhibition) and 250 µg Cu L-1 (to be one order of magnitude
higher) were selected. Cu-induced ROS-accumulation varied depending on
concentration, time, and strain (Fig. 9, Table 4). In diploid strains (RCC1216 and
F2), the high concentration of Cu (250 µg L-1) induced ROS accumulation after 90
min, but not at lower concentrations (25 µg L-1). Strain F2 accumulated ROS faster
than RCC1216 within the first 60 min (Fig. 9; upper and lower panels and Table 4).

Fig. 9. Time courses of 0, 25 and 250 Cu µg L-1-induced ROS in the diploid (upper panel) and haploid
(central panel) strains. For each strain, a two-way ANOVA followed by Tukey posthoc test was used
to determine when 250 µg L-1 (black *) or 25 µg L-1 (grey *) Cu treated samples were different from
controls. Results of a full multiple pairwise comparison is provided in Table 4. A two-way ANOVA
followed by Tukey posthoc test was performed with all data at the 60 min time point to test for
differences among strains (lower panel). The effects of strain, dose, and the interaction of these factors
were significant (F3,24=16.6, p<0.001; F2,24=98.6, p<0.001; F6,24=11.9, p<0.001). Shared letters indicate
when the responses of two or more strains were not significantly different within a given Cu treatment
in pairwise treatments, while * indicate differences among treatments within a strain (grey *, 25 µg L-1
Cu different from control; black *, 250 µg L-1 Cu different from control; **, 250 µg L-1 Cu different
from 25 µg L-1 Cu and control).
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However, at 90 min the intracellular ROS levels were similar between strains (Fig. 9;
upper panel and Table 4). In contrast to the diploid life stages, acute exposure to
both 25 and 250 µg L-1 Cu induced ROS accumulation in the haploid stage (Fig. 9;
central and lower panels). Notably, mean ROS accumulation in response to the
highest concentration of Cu was much lower in the Cu-resistant strain RCC1217
than in the Cu-sensitive strain B4.

DISCUSSION

Emiliania huxleyi has been previously shown to be resistant to Cu toxicity
compared to other coccolithophores (Brand et al., 1986), and coccolithophores in
general showed an intermediate level of resistance, with cyanobacteria and
dinoflagellates highly sensitive while some coastal diatoms and green algae are
highly resistant (Brand et al., 1986; Levy et al., 2007). Here we found a > 5-fold
variation within E. huxleyi in sensitivity to inhibition of growth by Cu, with
sensitivity varying by both among genetic backgrounds and between life stages of
the same genetic backgrounds (Table 3, Fig. 1). Our objective in this study was to
understand intra-specific variability, rather than to establish absolute toxicological
sensitivities to Cu for comparison to environmental values. However, we note that
the range of sensitivities observed were within the range of values previously
reported for this species (Levy et al., 2007; Echeveste et al., 2018), despite
methodological differences among studies (e.g., use of natural versus artificial
seawater, or glassware versus plasticware experimental vessels). The three strains
isolated from coastal South Pacific waters were not more resistant than five strains
isolated from oceanic waters, in agreement with the observations made by Echeveste
et al., where no significant differences in sensitivity to Cu were observed when
coastal and offshore strains were compared. Unlike the South Pacific open ocean,
where Aeolian inputs of metals are minimal, the Mediterranean receives Aeolian
input of Cu that has been shown to inhibit phytoplankton growth (Jordi et al., 2012),
yet both life cycle stages of the one Mediterranean strain tested exhibited the least
resistance to Cu. Thus, variability in sensitivity to Cu did not correlate in any clear
way with geographic origin. These results are in contrast to Synechococcus, highly
Cu-sensitive picophytoplankton, where the sensitivity to Cu has been reported to
correlate with Cu inputs (Stuart et al. 2013).

In both cases where alternant life stages from the same genetic background
were tested, the haploid (non-calcifying) stage was more resistant than the diploid
(calcifying) stage (Table 3, Fig. 1). A previous study also observed that parent
calcifying strains were more sensitive than daughter strains that were non-calcifying
in both Emiliania huxleyi and its close relative Gephyrocapsa oceanica (Levy et al.,
2007), although they did not mention whether the non-calcifying strains were
haploids or the diploid non-calcifying forms that also frequently appear (Klaveness
& Paasche, 1971; Klaveness, 1972), including apparent non-calcifying diploid
mutants (Mackinder et al., 2011). As noted by Levy et al. (2007), a higher sensitivity
of calcified strains is surprising, because the inorganic coccoliths provide a large
inert surface area would be expected to adsorb Cu, potentially reducing bio-available
Cu at the cell surface. However, although haploid E. huxleyi are not calcified, they
are covered in organic scales. In addition, coccolithogenesis must be supported by
very high ion fluxes (Mackinder et al., 2010), and the calcified stage has higher
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expressions of transporters related to Ca2+, H+, HCO3
-, Na+, K+ and Cl- than the

non-calcifying stages (von Dassow et al., 2009; MacKinder et al., 2011; Taylor et
al., 2011), which might result in higher fluxes of all ions (including Cu). However,
Levy et al. (2007) also tested an isolate of Isochrysis sp. a close relative of E. huxleyi
and G. oceanica that appears to be stuck in the non-calcifying haploid phase (and
exhibits the same scales and flagellar structure as E. huxleyi haploid cells, Carrier et
al., 2014), and found it to be much more sensitive than the calcified stages of E.
huxleyi and G. oceanica. Thus the observed higher resistance to Cu of the haploid
life stage in E. huxleyi might reflect a species-specific adaptation of this life stage
to resist certain types of stresses, emphasizing that the ecological role of the life
cycle in this species remains unknown.

We note that the Cu concentrations used in these experiments were
determined to be sub-lethal by FDA staining (Fig. 2). Likewise, effects of Cu on
photosynthetic efficiency (Fv/Fm) were not detected in most strains. The use of
modern pulsed amplitude modulated or fast repetition fluorometers (which were not
available to us during this study) might have been able to detect more subtle effects,
perhaps on other parameters of photosynthetic electron transport. However, in initial
tests our method successfully showed the dose-dependent drops and recoveries of
Fv/Fm in response to H2O2-treatment, showing that we could successfully detect
changes in functioning of the photosynthetic electron transport system (Fig. 7; upper
panel and data not shown). Also, our results are in agreement with several other
studies in different phytoplankton and macroalgae that also have observed that Fv/
Fm and other parameters of variable fluorescence tend to be less sensitive to Cu-
toxicity than growth (Juneau et al., 2002; Miller-Morey & Van Dolah, 2004; Perales-
Vela et al., 2007; Lombardi & Maldonado, 2011). More importantly, the two strains
in which a decrease in Fv/Fm was observed in response to high Cu were strains
which had exhibited intermediate sensitivity to growth inhibition. This suggests that
sensitivity to growth inhibition by Cu did not reflect a sensitivity of photosynthetic
electron transport to Cu-toxicity.

Growth inhibition is the most commonly tested parameter for toxicity
studies, but other biological outputs can also be affected. Here we found that Cu
toxicity strongly negatively affected coccolithogenesis of diploids (Fig. 3 and 4). In
diploids, Cu treatment resulted in the production of incomplete and malformed
coccoliths. Curiously there was no overall correlation between the Cu-sensitivity of
growth and the Cu-sensitivity of coccolithogenesis.

Growth inhibiting concentration of Cu also strongly inhibited motility in
haploids (Fig. 5). We could only test the effect on motility of one of the haploids
(the most Cu-sensitive strain) due to that the percentage of motile cells in the most
Cu-tolerant strain was low under control conditions during the course of the study.
However, it is noticeable that motility was >80% inhibited at 10 µg L-1 nominal Cu,
the concentration that caused only a 50% inhibition of growth. Thus, motility might
be more sensitive than growth.

High Cu is well known to result in oxidative stress, and resistance to Cu in
other algae involves the production of anti-oxidant enzymes (Maksymiec, W. 1997;
Correa et al., 1996; Contreras et al., 2009). Likewise, we observed that acute
exposure to high Cu caused a very rapid accumulation of ROS inside the cells
(Fig. 9). Notably, for both diploid and haploid stages, the Cu-resistant genetic
background appeared to accumulate intracellular ROS more slowly or to lower
levels than the Cu-sensitive genetic background in response to Cu. This suggested
that the difference in tolerance to Cu among diploids might be due to differences in
the capacity to tolerate oxidative stress.
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GP activity was responsive to Cu, as has been seen in other algae (Jervis
et al., 1997; Pinto et al., 2003; Contreras et al., 2005; Contreras et al., 2009) although
no significant differences were observed between the two strains with different Cu-
tolerances (Fig. 8). AP activity did not increase in response to Cu. However, the
constitutive activity of this enzyme was substantially different between the Cu-
sensitive strain F2 and the moderately Cu-tolerant strain RCC1216. This indicates
that part of the differences among strains may relate to intra-specific differences in
anti-oxidant activities. It is worth noting that Cu induces production and exudation
of Gln-Cys (a precursor to GSH) and Arg-Cys thiols, which form extracellular
complexes with Cu in Emiliania huxleyi (Dupont et al., 2004). GSH is the substrate
for phytochelatin synthase (reviewed in Kawakami et al., 2006; Masmoudi et al.,
2013), so Cu-induced GP activity might also work against phytochelatin production.
This might help explain the previously reported observation that Cu-induced
accumulation of intracellular phytochelatin in E. huxleyi dropped at high Cu
exposures (Ahner et al., 2002).

Although we were not able to test enzyme activities on the haploid strains
using the same protocol as used for diploid strains, the observation that Fv/Fm was
not diminished by peroxide treatment in RCC1217 and that acute Cu induced only
low ROS accumulation in this strain suggests that it might have higher constitutive
antioxidant activities than the other strains tested. It should be noted that as Cu
concentration was not measured along the experiments and they can not been
calculated from the available data, it is likely that nominal Cu concentrations do not
represent the bio-available fraction of this metal. Under this scenario, we can
interpret that GP activity was responsive to Cu and that constitutive AP activity
differed between strains but we cannot rule out that AP activity might be responsive
to other concentrations of Cu (or at other times of exposure), nor can we rule out
that the differences in Cu-induced GP activity between strains might occur if we had
been able to test lower cell densities and to better control the actual exposure
concentration.

Although here we have focused on oxidative stress responses, it is important
to recognize that the relatively high tolerance of Emiliania huxleyi to Cu likely
relates in part to its production of Cu-chelating ligands such as thiols (Dupont et al.,
2004; Leal et al., 1999; Vasconcelos et al., 2001; Echeveste et al., 2017). The
production of these ligands is both spontaneous and further induced by Cu. The
extrusion of these Cu-binding ligands may also be the mechanism for a very high
Cu export rate from E. huxleyi cells (Walsh & Ahner, 2014). In a recently published
work authors explore how production of organic ligands could explain differences
in sensitivity of E. huxleyi to Cu-inhibition of growth. The results of the work show
that the variability in Cu-sensitivity was at least partially explained by the production
of organic Cu-ligands, being the most productive strains the most tolerant to Cu at
constitutive levels (Echeveste et al., 2018). However, the fact that in our experiment
there were no correlations of Cu-sensitivities among different biological processes
(growth, coccolithogenesis, and photosynthetic electron transport efficiency)
suggested that differences in Cu-ligand production and Cu-export might not be
sufficient to explain the observed variability of sensitivity to Cu-toxicity observed
among strains: Differences in a mechanism that diminishes Cu-availability outside
the cell or the total Cu concentration inside the cell would be expected to result in
a strong co-variation between growth inhibition and negative effects on other cellular
and sub-cellular processes. This consideration supports our conclusion that
intracellular mechanisms also contribute to Cu-resistance. Therefore, the intra-
specific variability we observed is likely to be found in sensitivity to broad classes
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of environmental stressors beyond Cu toxicity, including reactivity to other metals
or other factors that induce oxidative stress.

In summary, our results show high intra-specific variability in tolerances to
Cu among genetic backgrounds and life cycle stages in the cosmopolitan
species Emiliania huxleyi. However, the sensitivity to Cu also varied depending on
what biological process was measured. In general, tolerance to Cu did not vary by
geographic origin but the haploid phase tends to be more resistant to this stress than
the diploid phase. The intra-specific variability in sensitivity to Cu might be partly
explained by differences in more general abilities to respond to oxidative stress.
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