Similar epiphytic macrofauna inhabiting the introduced *Sargassum muticum* and native fucoids on the Atlantic coast of Morocco

Zahira BELATTMANIA^a, Abdellatif CHAOUTI^a, Abdeltif REANI^a, Margarida MACHADO^b, Aschwin H. ENGELEN^b, Ester Á. SERRÃO^b & Brahim SABOUR^{a*}

^aPhycology R.U., Department of Biology, Faculty of Sciences, University of Chouaib Doukkali, El Jadida, Morocco.

^bCCMAR – Centre of Marine Sciences, University of Algarve, Faro, Portugal.

Abstract - The diversity and structure of epiphytic macrofaunal assemblages on the introduced invasive brown macroalga Sargassum muticum and native fucoids (Bifurcaria bifurcata, Cystoseira humilis, Cystoseira tamariscifolia and Sargassum vulgare) were compared over a 1-year period in intertidal rockpools on the Atlantic coast of Morocco. In comparison with the epiphytic fauna associated to other macroalgae from European shores, we found that the associated epiphytic macrofauna was moderately diverse (H²<3 bit) and was mainly dominated by gastropods and crustaceans. The most abundant taxa were the isopod Dynamene bidentata and the gastropods Steromphala umbilicalis and Steromphala pennanti. The epiphytic macrofauna community structure differed slightly between the invader and the natives along the year. There was significant temporal variation in the total number of individuals of epiphytic macrofauna per thallus dry weight for the associated epifauna with the highest abundance found on C. tamariscifolia in the spring. The composition of the epiphytic macrofauna on each macroalga species was fairly constant over time. Overall, our results demonstrated that the mobile epiphytic macrofauna on this rocky area showed low macroalgal specificity. They also revealed that the invader S. muticum supports similar epiphytic macrofaunal communities as the native brown macroalgae and provides an additional appropriate habitat for a generalist associated epiphytic macrofauna.

Sargassum muticum / native fucoids / macroalgal epifauna / intertidal community structure / invasive species / rockpools / Morocco

INTRODUCTION

Macroalgae are important coastal primary producers worldwide, acting as biogenic habitats or habitat-forming organisms and supporting a high density and diversity of associated epibiota such as epiphytic fauna and flora (e.g. Buschbaum et al., 2006; Schmidt & Scheibling, 2006; Christie et al., 2009; Cacabelos et al., 2010; Soler-Hurtado & Guerra-García, 2011; Bedini et al., 2014). Marine macroalgae play a fundamental role in coastal ecosystems by functioning as ecological engineering species (Christie et al., 2009), and also by providing protection and

^{*} Corresponding author: sabour.b@ucd.ac.ma

shelter from predators (reduce predation risk), and good feeding grounds for many organisms especially juvenile specimens. Furthermore, they increase the space for settlement (Bologna & Heck, 2000; Wikström & Kautsky, 2004; Cacabelos et al., 2010), attenuate current velocity and protect organisms from wave action, heat and desiccation (Moore, 1978; Hicks, 1980). These organisms (mesograzers) are important in transferring primary production to higher trophic levels (Taylor, 1998a). Changes in macroalgae-associated epiphytic macrofauna communities are related to several biological factors including habitat morphological complexity (Russo, 1990; Gee & Warwick, 1993; Guerra-García, 2001; Chemello & Milazzo, 2002; Schreider et al., 2003; Buschbaum et al., 2006; Veiga et al., 2014), life cycles (Gee & Warwick, 1994; Sánchez-Moyano et al., 2001), chemical defenses (e.g. Sieburth & Conover, 1965; Withers et al., 1975; Gorham & Lewey, 1984; Steinberg et al., 1998; Stiger et al., 2004; Wright et al., 2004; Plouguerné et al., 2006; Cacabelos et al., 2010), and also to some physical stressful factors related to the hydrodynamics such as wave exposure and tidal height (Beckley & McLachlan, 1979; Guerra-García, 2001; Schreider et al., 2003).

Marine coastal ecosystems are susceptible to biological introductions due to their open nature and the large dispersive potential/ability to drift of many marine species (Stæhr et al., 2000; Salvaterra et al., 2013). Many introduced macroalgae are able to monopolize space and to quickly spread, thanks to their capability for vegetative growth and their efficient dispersal mechanisms (Valentine et al., 2007). Thus, they are responsible for severe worldwide biological invasions, with important effects and serious ecological impacts on native species, communities and ecosystems (e.g. Piazzi et al., 2001; Grosholz, 2002; Buschbaum et al., 2006; Schaffelke & Hewitt, 2007; McKinnon et al., 2009; Byers et al., 2010; Pacciardi et al., 2011; Gestoso et al., 2012; Mineur et al., 2015; Thomsen et al., 2015). Invading macroalgae, indeed, are becoming one of the most important threats leading to the decline of the marine biodiversity (Stachowicz et al., 2002; Schaffelke et al., 2006; Schaffelke & Hewitt, 2007). These invasions affect resident assemblages by changing population dynamics and assemblage structure, altering ecosystem processes, disrupting trophic dynamics, disturbing and degrading habitats, or directly competing or parasitizing upon native species (Ruiz et al., 1999; Gestoso et al., 2010, 2012). The impacts of invasive species depend not only on intrinsic biological traits of the invader but also on the extrinsic characteristics of the recipient communities (Cacabelos et al., 2010).

The Japanese macroalga Sargassum muticum (Yendo) Fensholt is considered to be one of the most aggressive marine invaders (Norton, 1976; Boudouresque & Verlaque, 2002). Currently, this brown alga has a distribution almost covering the entire northern hemisphere and is predicted to increase habitat heterogeneity and substratum availability, providing suitable living conditions for many associated organisms (Buschbaum et al., 2006; Harries et al., 2007). To evaluate the potential effects of this invasive species incurred to native biota, previous studies on European coasts have focused on the epiphytic macrofauna inhabiting this invasive macroalga and native macroalgae (e.g. Viejo, 1999; Wernberg et al., 2004; Buschbaum et al., 2006; Monteiro et al., 2009; Gestoso et al., 2010, 2012; Engelen et al., 2013; Salvaterra et al., 2013; Veiga et al., 2014). Recently this introduced species was reported in the northwestern Atlantic coast of Morocco (Sabour et al., 2013). Unfortunately, no information regarding the interaction between this invader and the local biota is available for these recently colonised coasts. Moreover, in Morocco, studies concerning the epiphytic macrofauna associated with macroalgae – especially the invasives – have never been undertaken. Consequently, there is a complete and general lack of data from this geographical zone. The present work tried to fill this

gap by providing a first investigation in the composition and abundance of macroalgae-associated epiphytic macrofauna from the El Jadida coastline, Morocco. It represents a comparative analysis to assess the potential impact of *S. muticum* by investigating possible differences in the epiphytic macrofauna composition and abundance between this invader and native brown macroalgae.

The main objectives of this paper were 1) to characterise and compare the epiphytic macrofauna inhabiting the invasive macroalga *Sargassum muticum* and four autochthonous fucoid species (*Bifurcaria bifurcata, Cystoseira humilis, Cystoseira tamariscifolia* and *Sargassum vulgare*) and 2) to describe temporal variation over a year in the abundance of epiphytic macrofaunal assemblages in these five fucoid species representing the most common algal canopy on the El Jadida coastline.

MATERIAL AND METHODS

Study site, sampling and laboratory analyses

Fieldwork was carried out along the El Jadida shoreline (33°14'47.5"N 8°32'31.9"W) located on the Atlantic coast of Morocco (Fig. 1) on an intertidal shallow rocky platform. The sampling site (called "Saada") is an open wave-exposed coastal area consisting of an intertidal platform of rocky substratum (bedrocks) with tidal pools of 1–4 m deep (Belattmania *et al.*, 2017), which consist of a diverse macroalgal community (intermixed species) dominated by the invasive brown alga *Sargassum muticum*.

The samples were collected monthly at low tide from January to December 2015. The epiphytic macrofaunal assemblages associated to Sargassum muticum and the native Fucales (Bifurcaria bifurcata, Cystoseira humilis, C. tamariscifolia and S. vulgare) (Table 1) were sampled at four sampling points along a horizontal transect in the intertidal zone. In each point and for each macroalgal species, three replicates were haphazardly chosen from rockpools of the same tidal level. Each of these replicates consisted in a set of five individual thalli of that species. However, for S. vulgare and C. tamariscifolia the number of replicates depends on the macroalgae life cycle and density, as they overwinter just as holdfasts with a very short thallus structure. The design was similar to that in Engelen et al. (2013). The collected macroalgal samples were kept in plastic bags filled immediately after collection with 5% buffered formalin-seawater solution and transported to the laboratory for further sorting. In the laboratory, macroalgae were washed in freshwater and shaken several times vigorously to remove the associated epiphytic macrofauna. The water was subsequently sieved through 0.5 mm mesh size to recover released specimens. The entire thalli of macroalgae were also scrutinised to find and individually remove the epibionts still attached to them. Then, all collected organisms were stored in 70% ethanol for identification to the lowest possible taxonomic level and counting. The macroalgae were dried at 60°C for 72 h then weighed to determine macroalgal dry weight (DW).

Environmental variables were measured monthly during the study period to test their correlation with epiphytic macrofaunal patterns: air temperature (Ta), seawater temperature (Tw) and salinity (with a thermosalinometer "WTW LF340"), pH (with a portable pH meter "pHScan WP 1/2"), dissolved oxygen (DO, with a

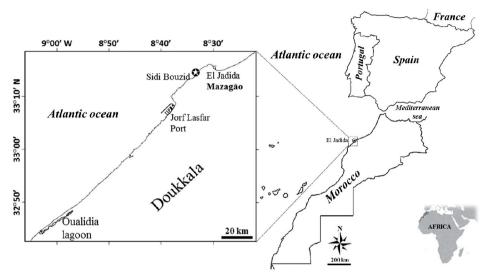


Fig. 1. Geographical location of the sampling site (3).

portable dissolved oxygen meter "HANA, HI 9142"), nitrogen (as NO_2^- and NO_3^-), phosphates (as PO_4^{3-}) and suspended matter (SM). Seawater samples were collected using polyethylene bottles, kept in the field in a coolbox at 4°C. In the laboratory, samples were filtered through Whatman® glass microfiber filters (GF/C 47 mm diameter, 1.2 µm pore size) to estimate the SM and to analyse the nutrient content according to Aminot and Chaussepied (1983).

Data analysis

Univariate analyses

The diversity of the epiphytic macrofauna community was characterised using species richness (S), abundance (N), Shannon-Wiener's diversity (H', as \log_2) (Shannon & Weaver, 1963) and Pielou's evenness (J') (Pielou, 1966). All biological indices were calculated first per replicate (each replicate corresponding to a set of 5 thalli) and were then rescaled to to 10 g of macroalgae dry weight for each replicate. Two-way ANOVA was applied to test the effects of host macroalgal species and seasons on the epiphytic macrofauna abundance, species richness and diversity considering macroalgal habitats (5 levels) and sampling seasons (4 levels) as fixed factors. One-way ANOVA was used to test for the possible seasonal differences in these indices within each macroalgal habitat separately and also for differences in environmental variables among seasons. When significant effects of the main factors or their interactions were found, the post hoc comparison test (Tukey's pairwise comparison test "HSD") was performed. Prior to both ANOVA analyses, data were tested with Kolmogorov-Smirnov's test and Levene's test to meet parametric assumptions of normality and homogeneity of variance, respectively, and data were log or square-root transformed in cases where assumptions for parametric testing

Table 1. Structural characteristics of macroalgal species sampled from the Moroccan Atlantic coast.

Species	Thalli structural description		Wet weight (g)	Height (cm)	Biovolume (ml)
Sargassum muticum	Strongly branched with tiny flat leave-like fronds and round air-bladders.	mean: min: max:	58.80 9.00 151.00	46.37 13.70 125.20	63.08 10.00 160
Sargassum vulgare	Bush-like thalli with stem compressed filiform, branch- like leaves lanceolate serrated and spherical air-vesicles	mean: min: max:	32.55 12.50 71.80	25.41 14.10 35.20	35.50 14.00 73.00
Cystoseira tamariscifolia	Bushy thalli strongly and irregularly branched	mean: min: max:	43.99 16.00 89.00	24.03 15.10 44.50	46.00 19.00 75.00
Cystoseira humilis	Irregularly branched with lower parts bush shaped, flattened into foliar expansions and primary laterals relatively elongated	mean: min: max:	36.12 15.60 70.50	29.24 19.20 48.70	38.92 18.00 75.00
Bifurcaria bifurcata	Cylindrical elongated fronds, unbranched near base then forked dichotomously from about halfway up the thallus	mean: min: max:	33.34 14.80 50.40	21.73 15.00 30.90	35.50 15.00 54.00

could not be met. The Spearman correlation coefficient was used to investigate the relationships between environmental and epiphytic macrofaunal data by pooling their density and species richness for all the macroalgae for each season according to Ba-Akdah *et al.* (2016).

Multivariate analyses

Permutational multivariate analysis of variance (PERMANOVA, Anderson, 2001: Anderson et al., 2008) was applied to test for effects of season (fixed factor. 4 levels) and habitat-providing macroalgal species (fixed factor: 5 levels, the invasive species and the natives) on the epiphytic macrofaunal community structure, based on Bray-Curtis similarity matrix calculated on log (x+1) transformed data. Season is used in the sense of time points along the year to assess variability along the studied year. Significant effects (p≤0.05) were further investigated based on a series of pairwise comparisons. Canonical analysis of principal coordinates (CAP) (Anderson & Willis, 2003) was performed to visualize the multivariate patterns in the fauna assemblages. Similarity percentages (SIMPER) analysis (Clarke, 1993; Clarke & Warwick, 1994) was used to identify the species mostly contributing to similarities in macrofauna communities within macroalgal groups, and those accounting for differences/dissimilarities among the epiphytic macrofauna of macroalgal hosts. The species contribution was restricted to 60% of the average cumulative dissimilarity due to the high number of macrofauna species detected by the SIMPER. In each comparison performed, the most discriminating epiphytic macrofauna species were considered to be the species with the highest contribution (>10%) to the differences among macroalgal habitats.

RESULTS

Environmental data

The PO_4^{3-} concentration varied from <1 μ M in winter to 3.71 μ M in summer. The maximum value of nitrogen ($NO_3^- + NO_2^-$) was found during autumn and the lower one at summertime (Table 2). The air and seawater temperatures ranged from 14 to 23°C and from 15°C to 20°C, respectively with maximum values in summer. The highest values of dissolved oxygen were recorded in spring (>10 mM on average) and the lowest ones (<3 mM on average) in autumn. Suspended matter values were generally higher than 10 mg/l but reached 50 mg/l in summer (Table 2). The salinity exceeded 37 PSU during spring and summer and showed lower values in winter (Table 2). Significant seasonal differences were detected only for phosphates, seawater temperature, salinity, and dissolved oxygen (Table 3). Positive significant correlation was obtained between salinity and seawater temperature (r=0.703, p<0.05). The air temperature was positively correlated with seawater temperature (r=0.799, p<0.01).

Biological data analysis

A total of 7,853 individuals of epiphytic macrofauna collected corresponding to 57 taxa, were identified in all macroalgae with a maximum of 47 species and a minimum of 23 species found in *S. muticum* and *S. vulgare*, respectively (Table 4). Gastropods and amphipods were the most species-rich groups accounting for 58% of the total number. The isopod *Dynamene bidentata* (Adams, 1800) and the gastropods *Steromphala umbilicalis* (da Costa, 1778) and *Steromphala pennanti*

Table 2. Abiotic variables measured at the sampling site during the study period.

	N	PO43-	Ta	Tw OO	Hď	DO	NS (salinity
	(mmon/l)	(mmol/l)	2	2		(mmot/t)	(1/Sm)	(rsu)
Winter	9.53 ± 1.21	0.49 ± 0.02	14.00 ± 1.00	15.50 ± 0.50	7.98±0.02	9.14±1.19	17.60 ± 2.00	33.30 ± 0.13
	10.11 ± 1.49	0.64 ± 0.07	14.50±0.50	16.00 ± 0.90	8.10 ± 0.05	6.50±0.67	18.60 ± 1.00	34.68 ± 0.43
	11.98 ± 0.88	0.49 ± 0.01	15.00±0.70	17.00±0.40	8.13 ± 0.01	13.47±1.30	9.50±1.00	36.07 ± 0.10
Spring	23.78±2.52	0.92±0.02	15.00±0.50	16.50±0.50	8.39±0.02	12.51±1.13	15.00±3.00	38.65±0.09
	24.17±2.09	1.21 ± 0.31	19.00±1.00	18.00 ± 1.00	7.80±0.04	10.17±0.82	11.10±0.50	37.50 ± 0.31
	9.84±0.81	1.50 ± 0.18	20.00 ± 0.50	19.00±0.50	7.95±0.05	11.73±1.18	15.80 ± 3.00	36.63 ± 0.23
Summer	8.52±0.48	1.35±0.03	21.00±0.10	20.00±1.00	7.90±0.02	8.56±0.90	55.10±2.00	38.71±0.12
	7.62±1.27	1.92±0.23	23.25 ± 0.50	19.50±0.50	7.90±0.01	6.22±0.52	30.80±1.00	38.50±0.43
	11.85±1.50	3.71 ± 0.50	20.50 ± 0.50	18.500±1.00	7.90±0.01	3.89±0.68	6.50±0.70	38.84±0.20
Autumn	29.70±2.68	2.42±0.68	19.00±1.00	18.00±0.20	7.90±0.03	2.25±0.20	13.00±2.00	37.55±0.13
	23.61 ± 2.43	2.35±0.88	18.00 ± 0.90	17.00 ± 0.50	8.03 ± 0.01	1.64 ± 0.08	15.00±1.00	37.10±0.22
	9.66±0.62	1.92 ± 0.10	17.00 ± 0.20	16.00 ± 1.00	8.04 ± 0.02	1.79 ± 0.03	18.80±0.50	36.26 ± 0.14

Data are represented as mean values of triplicate samples \pm SE, N = nitrite + nitrate, $PO_4^{5^2}$ = orthophosphates, Ta = air temperature, Tw = water temperature, DO = dissolved oxygen, SM = suspended matter.

Source of variation	df	MS	F	P	W-Sp	W-Su	W-A	Sp-Su	Sp-A	Su-A
N	3	1061624.972	2.375	0.146						
PO43-	3	22052.889	5.302	0.026	0.863	0.038	0.049	0.915	0.719	0.989
Та	3	153802.083	3.486	0.070						
Tw	3	51857.639	5.562	0.023	0.599	0.019	0.586	1.000	1.000	1.000
pН	3	171.667	0.645	0.607						
DO	3	590449.444	18.543	0.001	0.967	0.348	0.001	0.029	0.001	0.330
SM	3	2.083	1.136	0.391						
Salinity	3	85257.222	9.950	0.004	0.021	0.003	0.139	0.565	0.864	0.235

Table 3. One-way ANOVA analysis and post-hoc HSD test for the season effect on the environmental data.

df = degree of freedom, MS = mean square, W = winter, Sp = spring, Su = summer, A = autumn. The global F-ratios and pairwise p-values are shown. Significant p-values are reported in bold.

(Philippi, 1846) were the most numerically dominant epiphytic macrofaunal taxa and were common to all habitats and seasons (Table 4).

The fauna abundance, species richness and Shannon's diversity and Pielou's evenness significantly differed among macroalgae and seasons (except evenness), but no significant interaction effect (macroalga x season) was detected (2-way ANOVA, Table 5). The natives *S. vulgare* and *C. tamariscifolia* showed the highest mean epiphytic macrofauna abundances (Fig. 2), whereas the invasive depicted values not exceeding 21.3±1.4 ind./10 g DW as maximum during the winter. Only the abundance of the epiphytic macrofauna associated with *C. tamariscifolia* significantly differed among seasons (1-way ANOVA, Table 6). The highest richness was recorded on *S. muticum* and *C. tamariscifolia* over all seasons (Fig. 3). Only the associated epiphytic macrofauna of *S. vulgare* showed significant among-season differences in species richness (Table 6).

The three dominant epiphytic macrofauna species peaked in different seasons and macroalgae. *S. pennanti* showed the highest density on *S. muticum* in spring (20.27 ind./10 g macroalgae DW) and *S. umbilicalis* and *D. bidentata* exclusively showed their maxima on *C. humilis* in summer (62.06 ind./10 g DW) and winter (67.85 ind./10 g DW) respectively.

The diversity H' values in all macroalgae were lower than 3 bit during the four seasons, with the highest values registered in *C. tamariscifolia* and *S. vulgare* (Fig. 4). Significant seasonal variation of H' index was mainly found for *S. muticum* and *B. bifurcata* (Table 6). The evenness J' was exclusively higher in *B. bifurcata* than in the other macroalgal species (Fig. 5). No significant among-season differences were found for J' in all macroalgae, except *S. vulgare*.

Correlation analysis showed no significant relationships between the epiphytic macrofauna pooled density and all environmental data. The density of the most abundant species S. pennanti was negatively related to phosphates and air temperature (r=-0.65 and r=-0.58 respectively, p<0.05), and positively related to suspended matter (r=0.63, p>0.05). The density of S. umbilicalis was positively related to the seawater temperature (r=0.63, p<0.05). No significant correlations were found between the density of D. bidentata and environmental measures.

Table 4. Mean mobile epiphytic macrofauna density found on *Sargassum muticum* and native fucoid macroalgae during seasonal samplings (per 10g Dry Weight.

, com	Sargassum muticum	uticum	Cytoseira humilis	milis	Cytoseira tamariscifolia	riscifolia	Sargassum vulgare	ılgare	Bifurcaria bifurcata	urcata
Species	$D \pm SE$	F	$D \pm SE$	F	$D \pm SE$	F	$D \pm SE$	F	$D \pm SE$	F
Nemertea	0.02 ± 0.01	50	0.04±0.03	25	0.13±0.13	25			0.01 ± 0.00	25
Polychaeta										
Eupolymnia nesidensis	0.01 ± 0.01	25	0.01 ± 0.01	25					0.01 ± 0.01	50
Eulalia viridis	0.05 ± 0.02	100	0.01 ± 0.01	50			0.14 ± 0.14	25	0.09 ± 0.04	50
Eunice vittata	0.10 ± 0.04	75	0.04 ± 0.02	75	0.03 ± 0.03	25			0.07 ± 0.03	50
Platynereis dumerilii	0.54 ± 0.13	100	0.33 ± 0.13	50	1.60 ± 0.78	50	1.20 ± 0.73	50	0.41 ± 0.07	100
Syllis prolifera			0.01 ± 0.01	25	0.06 ± 0.06	25			0.01 ± 0.01	50
Lepidonotus clava	0.05 ± 0.03	100	0.02 ± 0.01	25	0.11 ± 0.07	25			0.02 ± 0.01	50
Branchiomma sp.	0.01 ± 0.01	50							0.02 ± 0.02	25
Mollusca										
Gastropoda										
Steromphala pennanti	2.21 ± 0.33	100	2.15 ± 0.32	100	1.96 ± 0.62	100	5.34±1.86	75	0.10 ± 0.17	100
Steromphala umbilicalis	3.80 ± 0.43	100	7.72±1.05	100	10.72 ± 2.54	100	10.97 ± 2.46	100	1.65 ± 0.16	100
Chauvetia brunnea	0.16 ± 0.06	75	0.05 ± 0.03	50	1.49 ± 0.51	100	0.22 ± 0.15	25	0.07 ± 0.03	75
Mitrella alvarezi	0.01 ± 0.01	50	0.06 ± 0.05	25						
Rissoa parva	0.39 ± 0.12	100	0.38±.12	75	1.05 ± 0.41	100	1.08 ± 0.73	75	0.09 ± 0.05	50
Omalogyra sp.	0.14 ± 0.13	50								
Nassarius sp.	0.02 ± 0.01	50	0.01 ± 0.01	25					0.01 ± 0.01	25
Littorina tenebrosa	0.08 ± 0.04	50	0.02 ± 0.01	50			0.10 ± 0.10	25	0.01 ± 0.00	25
Littorina neritoides	0.01 ± 0.01	25					0.10 ± 0.10	25		
Tricolia pullus	0.01 ± 0.00	50	0.01 ± 0.01	25	0.16 ± 0.16	25			0.01 ± 0.00	25
Bittium reticulatum	0.15 ± 0.05	25	0.14 ± 0.06	75	2.34 ± 1.89	50	0.67±0.57	25	0.08 ± 0.03	50
Monophorus perversus	0.01 ± 0.01	25								

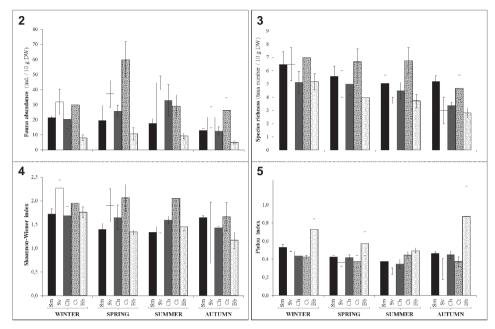

D = mean density as number of individuals per 10 g of macroalga dry weight; SE = standard error; F = frequency of occurrence during sampling seasons (%).

Table 4. Mean mobile epiphytic macrofauna density found on *Sargassum muticum* and native fucoid macroalgae during seasonal samplings (per 10g Dry Weight *(continued)*.

2	Sargassum muticum	uticum	Cytoseira humilis	ımilis	Cytoseira tamariscifolia	riscifolia	Sargassum vulgare	ulgare	Bifurcaria bifurcata	furcata
Species	$D \pm SE$	F	$D \pm SE$	F	$D \pm SE$	F	$D \pm SE$	F	$D \pm SE$	F
Bittium sp.									0.01±0.00	25
Nodulus contortus			0.03 ± 0.02	25	0.11 ± 0.11	25				
Ocinebrena sp.	0.01 ± 0.01	25	0.00 ± 0.00	25	0.02 ± 0.02	25				
Fusinus sp.	0.02 ± 0.01	25	0.01 ± 0.01	25					0.01 ± 0.00	25
Bivalvia										
Musculus costulatus	0.08 ± 0.03	50	0.10 ± 0.04	75	0.13 ± 0.09	50			0.06 ± 0.02	25
Arthropoda										
Pycnogonida										
Ammotheidae	0.01 ± 0.01	25	0.02 ± 0.02	25	0.01 ± 0.01	25	0.41 ± 0.37	25		
Amphipoda										
Ampithoe sp.	0.15 ± 0.09	50	0.08 ± 0.05	50	1.52 ± 1.51	50	0.20 ± 0.20	25	0.01 ± 0.01	25
Ampelisca lusitanica	0.01 ± 0.00	25							0.02 ± 0.01	50
Amphitholina cuniculus	0.21 ± 0.09	75	0.39 ± 0.16	75	1.57 ± 0.68	100	0.74 ± 0.51	25	0.19 ± 0.07	100
Apherusa cf. ovalipes	0.57 ± 0.15	100	0.34 ± 0.11	100	3.33±1.08	100	1.30 ± 0.57	75	0.06 ± 0.02	75
Aora spinicornis	0.74 ± 0.15	100	0.95 ± 0.21	100	2.40±0.77	100	4.46±1.91	75	0.30 ± 0.11	75
Jassa sp.					0.05 ± 0.05	50				
Ericthonius sp.	0.28 ± 0.19	25	0.20 ± 0.09	25	0.38 ± 0.25	25			0.01 ± 0.01	25
Caprella acanthifera	0.03 ± 0.02	25	0.09 ± 0.05	50	0.19 ± 0.19	25			0.05 ± 0.03	75
Elasmopus vachoni	0.14 ± 0.05	75	$0.11{\pm}0.05$	75	0.37±0.30	50			0.05 ± 0.02	75
Stenothoe sp.					0.01 ± 0.01	25				
Oedicerotidae									0.01 ± 0.00	25
Lysianassidae					0.01 ± 0.01	25			0.01 ± 0.00	25
Calliopiidae	0.33 ± 0.14	75	0.29 ± 0.08	100			0.39 ± 0.39	25	0.03 ± 0.02	25

Ampithoidae Prrierella audouiniana Bathyporeia sp.	0.44±0.22	50	0.47±0.14	75	0.67±0.49	25	2.22±1.30	50	0.05 ± 0.03 0.01 ± 0.00 0.01 ± 0.00	50 25 25
Apolochus neapolitanus	0.05 ± 0.04	50			0.01 ± 0.01	25				
Isopoda										
Dynamene bidentata	6.92 ± 1.15	100	6.57 ± 1.00	100	7.32±1.86	100	4.16 ± 1.37	100	4.00 ± 0.60	100
Stenosoma cf. acuminatum	0.18±0.05	100	0.39±0.10	75	0.46 ± 0.31	50	1.10±1.10	25	0.05 ± 0.02	50
Stenosoma cf. capito	0.12 ± 0.04	75	0.17 ± 0.10	50	0.03 ± 0.03	25			0.03 ± 0.02	50
Limnoriidae			0.01 ± 0.01	25						
Stenosoma cf. nadejda	0.04 ± 0.02	50	0.09 ± 0.05	75					0.01 ± 0.00	25
Paranthura	0.02 ± 0.02	25			0.03 ± 0.03	25			0.01 ± 0.00	25
Cleantis sp.	0.01 ± 0.01	25								
Decapoda										
Hyas cf. coarctatus			0.01 ± 0.01	25	0.02 ± 0.02	25	0.37±0.37	25		
Hippolyte varians	0.09 ± 0.04	75	0.09 ± 0.05	75	0.26 ± 0.18	50	0.20 ± 0.20	25	0.01 ± 0.01	25
Tanaidacea										
Chondrochelia savignyi	0.02 ± 0.01	50	0.07 ± 0.04	50			0.37 ± 0.37	25	0.02 ± 0.02	25
Echinodermata										
Astereina gibbosa	0.01 ± 0.01	50	0.02 ± 0.02	25	90.0≠90.0	25	0.08 ± 0.08	25	0.01 ± 0.00	25
Amphipholis squamata	0.03 ± 0.01	50	0.04 ± 0.03	25					0.06 ± 0.03	50
Chordata										
Syngnathus acus	0.01 ± 0.00	25								
Opeatogenys cadenati	0.04±0.02	50	0.14±0.08	25			0.10±0.10	25	0.02±0.01	50

D = mean density as number of individuals per 10 g of macroalga dry weight; SE = standard error; F = frequency of occurrence during sampling seasons (%).

Figs 2-5. **2.** Mean fauna abundance, **3.** Species richness, **4.** Fauna diversity, and **5.** Evenness of epiphytic macrofauna communities on *Sargassum muticum* (Sm), *Sargassum vulgare* (Sv), *Cystoseira humilis* (Ch), *Cystoseira tamariscifolia* (Ct), and *Bifurcaria bifurcata* (Bb). Error bars represent standard errors (n=36).

Species richness was negatively correlated with phosphates (r=-0.93, p<0.001), seawater and air temperatures (r=-0.66 and r=-0.62 respectively, p<0.05) and positively correlated with the dissolved oxygen and salinity (r=0.65 and r=0.66 respectively, p<0.05).

The epiphytic macrofaunal assemblages differed significantly among macroalgae over seasons (PERMANOVA, macroalga x season interaction, p=0.004; Table 7). During winter the epiphytic macrofauna composition of S. muticum differed from that of the native macroalgae (PERMANOVA, pairwise test; Fig. 6), except C. humilis (p=0.088) and S. vulgare (p=0.124). In spring (Fig. 7), the fauna of S. muticum mainly differed from that of C. tamariscifolia (p=0.001) and B. bifurcata (p=0.021). The latter had a fauna composition different from all native macroalgae with p values ranging from 0.001 to 0.046. During summer, S. muticum showed fauna composition differing from that of all native macroalgae (PERMANOVA, pairwise test, 0.001<p<0.032; Fig. 8). In autumn, the fauna composition of S. muticum did not differ from that of S. vulgare (PERMANOVA, pairwise test, Fig. 9). SIMPER analysis showed moderate average dissimilarities (from 43.7 to 79.0) among the macroalgae over seasons (Table 8). The isopod D. bidentata and the gastropods S. umbilicalis and S. pennanti were the most important contributive species to the dissimilarity of epiphytic macrofaunal assemblages between S. muticum and the natives throughout all seasons. These species were more abundant on S. muticum than on B. bifurcata. The gastropod Chauvetia brunnea (Donovan, 1804) was the most important species shaping differences in epiphytic macrofaunal assemblages

0.013

0.003

0.970

0.045

0.005

0.780

0.000

0.194

0.699

	df	MS	F	P
Abundance				
Macroalgae	4	10356137.290	8.886	0.000
Season	3	4268712.015	3.663	0.018
Macroalgae x season	12	1704634.146	1.463	0.146

97315.690

168068.748

14074.924

3196.551

6544.123

969.635

1370.198

373.010

3.048

5.264

0.441

2.346 4.000

0.708

6.002

1.634

0.786

4

3

12

4

3

12

4

3

12

Table 5. Two-way ANOVA results for the season and algal species effects on diversity of the

Table 6. One-way ANOVA analysis for the season effect on biotic data (N, S, H' and J') of the associated epiphytic macrofauna in each macroalgal habitat

Managalana	1	V	Å	S	I	ł'		J'
Macroalgae	\overline{F}	p	F	p	F	p	F	p
Sargassum muticum	0.451	0.723	0.797	0.529	4.656	0.036	3.494	0.070
Sargassum vulgare	2.753	0.112	4.058	0.050	3.565	0.067	6.386	0.016
Cystoseira humilis	1.810	0.223	1.678	0.248	0.826	0.515	1.123	0.396
Cystoseira tamariscifolia	4.235	0.046	0.440	0.731	0.668	0.595	0.700	0.578
Bifurcaria bifurcata	1.028	0.430	3.615	0.065	4.694	0.036	0.815	0.521

N = abundance, S = species richness, H' = Shannon-Wiener's diversity, J' = Pielou's evenness. Degree of freedom = 3, Significant P-values are reported in bold.

Table 7. Permutational multivariate analysis of variance (PERMANOVA) testing for differentiation among epiphytic macrofaunal assemblages across macroalgal host species and seasons.

Source	df	Pseudo-F	P (perm)
Macroalga	4	8.0248	0.001
Season	3	4.3346	0.001
Macroalga x season	12	1.5429	0.004
Total	330		

df = degree of freedom. Significant P-values are reported in bold.

Macroalgae

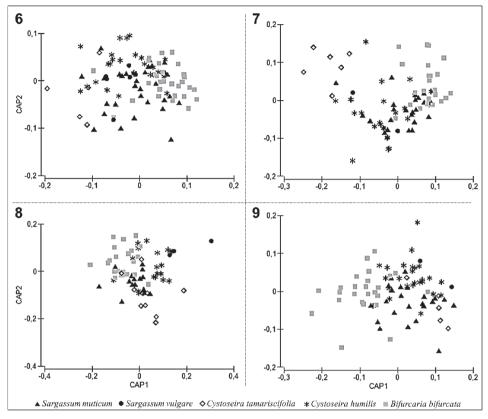
Diversity H' index

Macroalgae

Evenness J' index Macroalgae

Macroalgae x season

Macroalgae x season


Macroalgae x season

Season

Season

Season

^{179.503} df = degree of freedom; MS = mean square; F = statistics. Significant P-values are reported in bold.

Figs 6-9. Canonical analysis of principal coordinates (CAP) ordinations of epiphytic macrofauna communities associated with *Sargassum muticum* and native macroalgae *Cytoseira humilis*, *Cystoseira tamariscifolia*, *Sargassum vulgare*, *Bifurcaria bifurcata* during: **6.** Winter, **7.** Spring, **8.** Summer, and **9.** Autumn.

associated with *S. muticum* and *C. tamariscifolia* during spring with higher abundance on *C. tamariscifolia*. The amphipod *Aora spinicornis* Afonso, 1976 was among the important contributors to the differences in the epiphytic macrofauna associated to *S. muticum* and *S. vulgare* during summer and it was much more abundant on *S. vulgare* than on *S. muticum*. The amphipod *Amphitholina cuniculus* (Stebbing, 1874) exclusively contributed to the difference between *C. tamariscifolia* and *S. muticum* during autumn. This amphipod depicted higher abundance on *C. tamariscifolia* compared to *S. muticum*. In general, analysing the species accounting for dissimilarities among these macroalgae revealed that it was largely the same species that were also characteristic for identifying epiphytic macrofauna of the respective macroalgal hosts (Table 8), i.e. epiphytic macrofauna are mainly distinguished by comparison of common species, rather than by rare or missing species. Furthermore, it was obvious that the invader *S. muticum* did not shelter a distinctive group of species compared to the native algal hosts, particularly *C. humilis* and *S. vulgare*.

Table 8. SIMPER analysis of the epiphytic macrofauna associated with Sargassum muticum (Sm) and native macroalgae Bifurcaria bifurcata (Bb), Cystoseira tamariscifolia (Ct), Sargassum vulgare (Sv) and Cystoseira humilis (Ch) during sampling seasons

			WINTER		
	Sm (28.58)	Bb (31.53)	Ct (23.16)	Sm/Bb [71.50]	Sm/Ct [79.04]
		Average abundance	bundance	Dissimilarity contribution (%)	(%) u
Dynamene bidentata	1.48	88.0	1.25	17.53	12.14
Steromphala pannanti	0.76	08.0	09.0	12.94	6.97
Steromphala umbilicalis	98.0	0.64	1.12	10.81	8.08
Platynereis dumerilii	0.34	0.33	0.47	6.45	3.88
Aora spinicornis	0.45	0.02	0.90	5.44	8.37
Rissoa parva	0.34	80.0	1.12	4.14	8.35
Apherusa cf. ovalipes	0.22	0.11	1.22	3.53	9.43
			SPRING		
	Sm (42.88)	Bb (41.93)	Ct (49.50)	Sm/Bb [59.58]	Sm/Ct [66.02]
		Average a	Average abundance	Dissimilarity contribution (%)	(%) u
Dynamene bidentata	1.50	1.50	1.87	24.33	12.25
Steromphala umbilicalis	1.46	98.0	2.81	17.81	12.62
Steromphala pennanti	0.77	0.47		13.00	ı
chauvetia brunnea	60.0		1.63	ı	14.39
Apherusa cf. ovalipes	0.28		1.22	ı	11.04
Bittium reticulatum	0.02	-	0.89	•	8.71

Average similarities are shown in parentheses and average dissimilarities for each comparison are shown in brackets.

Table 8. SIMPER analysis of the epiphytic macrofauna associated with Sargassum muticum (Sm) and native macroalgae Bifurcaria bifurcata (Bb), Cystoseira tamariscifolia (Ct), Sargassum vulgare (Sv) and Cystoseira humilis (Ch) during sampling seasons (continued)

	Sm (58.96)	Bb (63.21)	SUMMER Ct (49.23) (MER Ch (58.22)	Sv (62.67)	Sm/Bb [44.10]	Sm/Ct [48.24]	Sm/Ch [43.79]	Sm/Sv [44.63]
		Average a	Average abundance			Dissimila	Dissimilarity contribution (%)	(%) uoi	
Steromphala pennanti	1.02	0.23	1.24	69:0		20.02	11.52	16.59	
Steromphala umbilicalis	1.60	1.16	2.25	2.42	2.73	19.61	13.31	20.22	16.74
	2.14	1.67	1.58	2.12	1.73	16.22	13.65	14.46	14.09
Platynereis dumerilii	0.31		1.01				12.36		
Amphitholina cuniculus	90.0		0.52				6.64		
	0.22				2.29				26.01
Apherusa cf. ovalipes	0.20				1.22				14.51
			AUTUMN	JMN					
	Sm (48.23)	Bb (42.29)	Ct (34.29)	Ch (43.88)		Sm/Bb [60.30]	Sm/Ct [61.15]	Sm/Ch [56.29]	
		Average a	Average abundance			Dissimila	Dissimilarity contribution (%)	(%) uoi	
Dynamene bidentata	1.47	06.0	1.72	1.16		19.08	10.96	14.92	
Steromphala pennanti	08.0	0.38		0.47		17.04		15.46	
Steromphala umbilicalis	1.00	69.0	0.92	1.48		15.91	9.64	16.52	
	0.53	0.03	1.22	0.33		10.35	13.02	10.48	
Amphitholina cuniculus	0.30		1.18	0.28			12.59	7.43	
Apherusa cf. ovalipes	0.30		1.19				12.22		

Average similarities are shown in parentheses and average dissimilarities for each comparison are shown in brackets.

DISCUSSION

The present study showed that epiphytic macrofaunal assemblages associated with the invasive Sargassum muticum were markedly distinct from those of the natives, Bifurcaria bifurcata and Cystoseira tamariscifolia, but were only slightly different from those of C. humilis and S. vulgare depending on the season. The faunal diversity of S. muticum was among the lowest compared to the native macroalgae. However, in general, epiphytic macrofaunal assemblages inhabiting local macroalgae successfully colonised the invasive S. muticum and they were characterised by moderate abundance and diversity, compared with those described for other macroalgal habitats (e.g. Gestoso et al., 2012; Janiak et al., 2012; Engelen et al., 2013). Most previous studies, like our study, showed there were no or limited differences in the associated epiphytic macrofaunal assemblage structure between native and invasive macroalgae. For instance, the comparison of S. muticum to a similar indigenous alga Halidrys siliquosa showed that both species had a very similar epiphytic macrofauna community (Wernberg et al., 2004; Buschbaum et al., 2006). On the southern Portuguese coast (Engelen et al., 2013) and the northern Spain (Viejo, 1999), the macrofauna associated with S. muticum exhibited negligible differentiation in diversity relative to that in native macroalgae. In contrast, a few studies differed from this general trend and highlighted major differences between the macrofauna colonising S. muticum and native macroalgae: on the southern part of the Galician coast, NW Spain, S. muticum harbored a macro-invertebrate assemblage markedly different from that of the native alga Laminaria ochroleuca where the sampling time, the epiphytic load and the height on the shore were the most important factors shaping epiphytic macrofaunal assemblages (Cacabelos et al., 2010). On the same coast, S. muticum supported epiphytic macrofaunal assemblages that were different from those of B. bifurcata, and this difference was more consistent across space and time (Gestoso et al., 2010). Significant differences were found in the abundance, species richness and the structure of macrofaunal assemblages associated with S. muticum and the native species Chondrus crispus and B. bifurcata in northern Portugal (Veiga et al., 2014). All these studies show that there is no simple answer to the question of whether this invasive species hosts different faunal communities than the native species, and additional factors might be responsible for the differences among studies.

The shape, and morphological and structural habitat complexity of the host macroalgae have a seasonal variability that might be important in determining patterns of abundance and structure of the associated epiphytic macrofauna (Guerra-García, 2001). Abundance and community composition of associated organisms can be strongly influenced by the architecture of the host algae, and morphological complexity of macroalgae is often positively correlated with the number of species associated (e.g. Hacker & Steneck, 1990; Gee & Warwick, 1993, 1994; Taylor & Cole, 1994; Buschbaum et al., 2006; Munari et al., 2015). Indeed, the most structurally complex algae commonly sustain higher animal diversity and abundance by increasing living/colonisable space for fauna and epiphytic algae (Morse et al., 1985; Gee & Warwick, 1994; Chemello & Milazzo, 2002; Taniguchi et al., 2003; Bedini et al., 2014), and providing more vacant ecological niches to occupy (Matias et al., 2007). They enhance availability and variety of food organisms in terms of periphytic algae and detritus (Higler, 1975; Glowacka et al., 1976; Fretter & Manley, 1977), suitable feeding surfaces, modification of micro-environmental conditions (Gibbons, 1988a) and they also increase protection from predation by reducing the

foraging effectiveness of predators (Coull & Wells, 1983; Gibbons, 1988b). This is supported by studies showing that the assemblage on S. muticum is more abundant and species-rich compared to the morphologically simple native species Saccharina latissima and Dictyota dichotoma (Giver, 1999; Harries et al., 2007). The thalli of S. muticum, like those of other structurally complex algae (Tanaka & Leite, 2003; Wikström & Kautsky, 2004), may create a high number of microhabitats, hosting organisms with different requirements (Russo, 1990; Gee & Warwick, 1994; Taylor, 1998b; Cacabelos et al., 2010). However, this was not the case in the present study where S. muticum sheltered similar fauna diversity to that of the native algae with simple morphological complexity (namely B. bifurcata, a cylindrical species) (see Table 1). In fact, our results corroborated those of Engelen et al. (2013), which stated that habitat complexity did not seems to be the key variable that determined the richness and abundance of macrofaunal species associated with macroalgae, as it commonly would be thought. Consequently, the habitat choice/preference of fauna species involves more than the main hypothesis of morphological complexity. To sum up, although algal habitat architecture seems to play a significant role in shaping abundance and diversity of epiphytic macrofaunal assemblages, in our study the structural complexity of the invasive macroalga differed from that of native species but hosted similar assemblages. Therefore, our findings suggested that the invasive macroalga, despite being structurally different from native species, did not seem to induce changes in the associated epiphytic macrofauna (in contrast with the statement of Veiga et al., 2014).

A major difference in the comparison of the epiphytic macrofauna associated with *S. muticum* on a Moroccan coast (present study) with that from Portugal (Engelen *et al.*, 2013) is that, on the southern Portuguese coast *S. muticum* hosted a total of 68 species, mainly dominated by annelids, which is much higher than what we encountered (46 species) crowned by gastropods. Discriminating species (i.e., those that contributed most to the dissimilarity among groups) in both studies were completely different. This might be due to the strong temperature gradient along the Iberian Atlantic coasts that delineates the southern distribution limit for many organisms (Lima *et al.*, 2007; Engelen *et al.*, 2013). The Moroccan coast here studied is an upwelling zone that is favorable habitat for algal species that are typical of colder zones and are absent from warmer south Portugal (e.g., Neiva *et al.*, 2015; Assis *et al.*, 2016; Lourenço *et al.*, 2016), and it can be hypothesised that this coastal distributional gap, magnified by Atlantic waters separating the two continents, might limit the presence of some faunal species in Morocco due to dispersal barriers.

The seasonal variations of the epiphytic macrofauna abundance and species richness might coincide with the seasonality of host algal species (Guerra-García *et al.*, 2011), and probably relied on the variations of macroalgae life cycle (Sánchez-Moyano *et al.*, 2001). Fauna abundances peaked in spring for the most studied macroalgae (e.g. *C. tamariscifolia*, *S. muticum*, *B. bifurcata*); this season corresponded to the exponential vegetative growth of algae coinciding with maximal algal biomass. Effectively, many studies have found that maximal abundances of epiphytic macrofauna were recorded during periods of maximal algal biomass (e.g. Edgar, 1983; Duffy, 1990). In previous reports, such abundance peaks generally occurred in spring or summer (Viejo, 1999; Wernberg *et al.*, 2004; Pacios *et al.*, 2011) except in some tropical studies (Russo, 1989). Furthermore, the low abundance detected in autumn corresponded to the decline of macroalgae according to the life cycle for the most studied species except for *S. muticum* (pseudo-perennial life cycle) where the thalli senescence happened in mid-august (summer). In fact, fertile individuals of *S. muticum* can only be found from April to July. After the end of the reproductive

period, the vegetative growth rate declines rapidly and the lateral branches start to degenerate, leaving only a discoid holdfast from which primary laterals regenerate during the following winter (Sabour, *pers. observ.*). Associated organisms are lost with the shedding of branches triggering the epiphytic macrofauna abundance decrease.

Regarding the fauna specificity, in this study, the macroalgal associated epiphytic macrofauna has opportunistic behavior with low host-plant specificity. Most fauna species are habitat-non-selective (generalist) and have a non-specific relationship with their hosts (similar dominant species, a high number of common species and very few taxa were found in just one algal species). A similar result was previously reported in New Zealand (Taylor & Cole, 1994) where epiphytic macrofaunal species were not highly host specific to various brown algae species. Also, this low host-alga specificity expressed by the fauna associated to *S. muticum* and several native macroalgae was reported on the coasts of southern Portugal (Engelen *et al.*, 2013) and northern Spain (Viejo, 1999). The low degree of specificity of the epiphytic macrofauna to the host detected in marine ecosystems is generally due to the dominance of generalist fauna species (generalist habits of mesograzers consuming the host itself) or the existence of an indirect relationship mediated by the presence of epiphytic algae (Viejo, 1999).

Previous studies investigating the ecological impact of introduced macroalgae, particularly those on the macroalgal-associated fauna pointed out a severe effect reflected by a decrease in the diversity and abundance of epiphytic macrofaunal species (Tippets, 2002; Schmidt & Scheibling, 2006). However, other studies reported that the invasive species did not cause any significant effects on the associated epiphytic macrofauna or were even beneficial as the introduction of *Gracilaria vermiculophylla* in the southeastern USA, for example, which resulted in an increase in epiphytic macrofauna abundances (Byers *et al.*, 2012). In the present research, similarities found between epiphytic macrofauna assemblages of *S. muticum* and some native macroalgae indicated that the introduction of *S. muticum* on intertidal rocky shores of Morocco seems to have a limited impact on the associated animals. This was also the case for rocky shores of Helgoland, German Bight (Buschbaum *et al.*, 2006) and intertidal pools of the western and southern coasts of Portugal (Engelen *et al.*, 2013).

In conclusion, this study demonstrated that the epiphytic macrofauna assemblage associated to macroalgae depended on macroalgal identity and varied along a year. The communities on *S. muticum* were slightly different from those on some native macroalgae. The invasive *S. muticum* seemed to provide a suitable habitat for a variety of the macrofauna taxa and its pseudo-perennial life history appeared to have no effect on the native epiphytic macrofaunal, which showed little host specificity to the habitat-providing algal species. This study also indicated that the temporal variation of the community of epiphytic macrofauna along a year was not only influenced by the macroalgae as substrate/habitat, but also by the environmental conditions.

Acknowledgements — We thank the Portuguese Science Foundation FCT through program Multi/04326/2013 and fellowship SFRH/BPD/107878/2015 to AHE.

REFERENCES

- AMINOT A. & CHAUSSEPIED M., 1983 Manuel des analyses chimiques en milieu marin. Brest: CNEXO, 395p.
- ANDERSON M.J., 2001 A new method for non-parametric multivariate analysis of variance. *Austral ecology* 26: 32-46.
- ANDERSON M.J. & WILLIS T.J., 2003 Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. *Ecology* 84(2): 511-525.
- ANDERSON M.J., GORLEY R.N. & CLARKE K.R., 2008 PERMANOVA+ for PRIMER: guide to software and statistical methods, PRIMER-E, Plymouth, 214p.
- ANDREW N.L. & VIEJO R.M., 1998 Ecological limits to the invasion of *Sargassum muticum* in northern Spain. *Aquatic botany* 60: 251-263.
- ASSIS J., COELHO N.C., LAMY T., VALERO M., ALBERTO F. & SERRÃO E.A., 2016 Deep reefs are climatic refugia for genetic diversity of marine forests. *Journal of biogeography* 43: 833-844.
- BA-AKDAH M.A., SATHEESH S. & Al-SOFYANI A.A., 2016 Habitat preference and seasonal variability of epifaunal assemblages associated with macroalgal beds on the Central Red Sea coast, Saudi Arabia. *Journal of the marine biological association of the United Kingdom* 96(7): 1457-1467.
- BECKLEY L.E. & McLACHLAN A., 1979 Studies on the littoral seaweed epifauna of St. Croix Island. I. Physical and biological features of the littoral zone. *South African Journal of zoology* 14(4): 175-182.
- BELATTMANIA Z., CHAOUTI A., MACHADO M., ENGELEN A., SERRÃO E.A., REANI A. & SABOUR B., 2017 *Ampelisca lusitanica* (Crustacea: Amphipoda): new species for the Atlantic coast of Morocco. *Marine biodiversity records* 10: 7.
- BEDINI R., BONECHI L. & PIAZZI L., 2014 Mobile epifaunal assemblages associated with *Cystoseira* beds: comparison between areas invaded and not invaded by *Lophocladia* lallemandii. Scientia marina 78(3): 425-432.
- BOLOGNA P.A.X. & HECK Jr.K.L., 2000 Impacts of seagrass habitat architecture on bivalve settlement. *Estuaries* 23(4): 449-457.
- BOUDOURESQUE C.F. & VERLAQUE M., 2002 Biological pollution in the Mediterranean Sea: invasive versus introduced macrophytes. *Marine pollution bulletin* 44: 32-38.
- BRITTON-SIMMONS K.H., 2004 Direct and indirect effects of the introduced alga Sargassum muticum on benthic subtidal communities of Washington State. USA. Marine ecology progress series 277: 61-78.
- BUSCHBAUM C., CHAPMAN A.S. & SAIER B., 2006 How an introduced seaweed can affect epibiota diversity in different coastal systems. *Marine biology* 148: 743-754.
- BYERS J.E., WRIGHT J.T. & GRIBBEN P.E., 2010 Variable direct and indirect effects of a habitat-modifying invasive species on mortality of native fauna. *Ecology* 91: 1787-1798.
- BYERS J.E., GRIBBEN P.E., YEAGER C. & SOTKA E.E., 2012 Impacts of an abundant introduced ecosystem engineer within mudflats of the southeastern US coast. *Biological invasions* 14: 2587-2600.
- CACABELOS E., OLABARRIA C., INCERA M. & TRONCOSO J.S., 2010 Effects of habitat structure and tidal height on epifaunal assemblages associated with macroalgae. *Estuarine, coastal and shelf science* 89: 43-52.
- CARLSSON N.O.L. & LĂCOURSIERE J.O., 2005 Herbivory on aquatic vascular plants by the introduced golden apple snail (*Pomacea canaliculata*) in Lao PDR. *Biological invasions* 7: 233–241.
- CHEMELLO R. & MILAZZO M., 2002 Effect of algal architecture on associated fauna: some evidence from phytal mollusks. *Marine biology* 140: 981-990.
- CHRISTIE H., NORDERHAUG K.M. & FREDRIKSEN S., 2009 Macrophytes as habitat for fauna. *Marine ecology progress series* 396: 221–233.
- CLARKE K.R., 1993 Non-parametric multivariate analyses of changes in community structure. Australian journal of ecology 18: 117–143.
- CLARKE K.R. & WARWICK R.M., 1994 Changes in marine communities: *an* approach to statistical analyses and interpretation. Plymouth, Natural Environment Research Council, Plymouth Marine Laboratory. 176p.
- Marine Laboratory, 176p.

 CONNAN S., GOULARD F., STIGER V., DESLANDES E. & Ar GALL E., 2004 Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. *Botanica marina* 47: 410-416.

- COULL B.C. & WELLS J.B.J., 1983 Refuges from fish predation: experiments with phytal meiofauna from the New Zealand rocky intertidal. *Ecology* 64: 1599-1609.
- D'ANTONIO C.M. & VITOUSEK P.M., 1992 Biological invasions by the exotic grasses: the grass/ fire cycle and global change. *Annual review of ecology, evolution, and systematics* 23: 63-87.
- DUFFY J.E., 1990 Amphipods on seaweeds: partners or pests? Oecologia 83: 267-276.
- EDGAR G.J., 1983 The ecology of south-east Tasmanian phytal animal communities. II. seasonal change in plant and animal populations. *Journal of experimental marine biology and ecology* 70: 159-179.
- ENGELEN A.H., PRIMO A.L., CRUZ T. & SANTOS R., 2013 Faunal differences between the invasive brown macroalga *Sargassum muticum* and competing native macroalgae. *Biological invasions* 15: 171-183.
- FRETTER V. & MANLEY R., 1977 Algal associations of *Tricolia pullus*, *Lacuna vincta* and *Cerithiopsis tubercularis* (Gastropoda) with special reference to the settlement of their larvae. *Journal of the marine biological association of the United Kingdom* 57: 999-1017.
- GEE J.M. & WARWICK R.M., 1993 Body-size distribution in a marine metazoan community and the fractal dimensions of macroalgae. *Journal of experimental marine biology and ecology* 178: 247-259.
- GEE J.M. & WARWICK R.M., 1994 Metazoan community structure in relation to the fractal dimensions of marine macroalgae. *Marine ecology progress series* 103: 141-150.
- GESTOSO I., OLABARRIA C. & TRONCOSO J.S., 2010 Variability of epifaunal assemblages associated with native and invasive macroalgae. *Marine and freshwater research* 61: 724-731.
- GESTOSO I., OLABARRIA C. & TRONCOSO J.S., 2012 Effects of macroalgal identity on epifaunal assemblages: native species versus the invasive species Sargassum muticum. Helgoland marine research 66: 159-166
- GIBBONS M. J., 1988a The impact of sediment accumulation, relative habitat complexity and elevation on rocky shore meiofauna. *Journal of experimental marine biology and ecology* 122: 225-241.
- GIBBONS M.J., 1988b Impact of predation by juvenile *Clinus superciliosus* on phytal meiofauna: are fish important as predators? *Marine ecology progress series* 45: 13-22.
- GIVER K.J., 1999 Effects of the invasive seaweed *Sargassum muticum* on native marine communities in northern Puget Sound, Washington. MSc thesis, Western Washington University, USA.
- GLOWACKA I., SOSZKA G. J. & SOSZKA H., 1976 Invertebrates associated with macrophytes. *In*: Pieczynska E. (ed.), *Selected problems of lake littoral ecology*. University of Warsaw, pp. 97-122.
- GORHAM J. & LEWEY S.A., 1984 Seasonal changes in the chemical composition of *Sargassum muticum*. *Marine biology* 80: 103-107.
- GROSHOLZ E., 2002 Ecological and evolutionary consequences of coastal invasions. *Trends in ecology & evolution* 17(1): 22-27.
- GUERRA-GARCÍA J.M., 2001 Habitat use of the Caprellidea (Crustacea: Amphipoda) from Ceuta, North Africa. *Ophelia* 55(1): 27-38.
- GUERRA-GARCÍA J.M., BAEZA-ROJANO E., CABEZAS M.P. & GARCÍA-GÓMEZ J.C., 2011 Spatial patterns and seasonal fluctuations of intertidal macroalgal assemblages from Tarifa Island, Southern Spain: relationship with associated Crustacea. *Journal of the marine biological association of the United Kingdom* 91: 107-111.
- HACKER S.D. & STENECK R.S., 1990 Architecture and the abundance and body-size-dependent habitat selection of a phytal amphipod. *Ecology* 71(6): 2269-2285.
- HARRIES D.B., HARROW S., WILSON J.R., MAIR J.M. & DONNAN D.W., 2007 The establishment of the invasive alga *Sargassum muticum* on the west coast of Scotland: a preliminary assessment of community effects. *Journal of the marine biological association of the United Kingdom* 87: 1057-1067.
- HICKS G.R.F., 1980 Structure of phytal harpacticoid copepod assemblages and the influence of habitat complexity and turbidity. *Journal of experimental marine biology and ecology* 44: 157-192.
- HIGLER L.W.G., 1975 Analysis of the macrofauna-community on Stratiotes vegetation. Verhandlungen des Internationalen Verein Limnologie 19: 2773-2777.
- JANIAK D.S. & WHITLATCH R.B., 2012 Epifaunal and algal assemblages associated with the native Chondrus crispus (Stackhouse) and the non-native Grateloupia turuturu (Yamada) in eastern Long Island Sound. Journal of experimental marine biology and ecology 413: 38-44.
- LIMA F.P., RIBEIRO P.A., QUEIROZ N., HAWKINS S.J. & SANTOS A.M., 2007 Do distributional shifts of northern and southern species of algae match the warming pattern? Global change biology 13: 1-13.

- LOURENÇO C.R., ZARDI G.I., McQUAID C.D., SERRAO E.A., PEARSON G.A., JACINTO R. & NICASTRO K.R., 2016 Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. *Journal of biogeography* 43: 1595–1607.
- MACK R.N., SIMBERLOFF D., LONSDALE W.M., EVANS H., CLOUT M. & BAZZAZ F.A., 2000
 Biotic invasions: causes, epidemiology, global consequences and control. *Ecological applications* 10: 689-710.
- MAGGI E., BENEDETTI-CECCHI L., CASTELLI A., CHATZINIKOLAOU E., CROWE T.P., GHEDINI G., KOTTA J., LYON D.A., RAVAGLIOLI C., RILOV G., RINDI L. & BULLERI F., 2015 Ecological impacts of invading seaweeds: a meta-analysis of their effects at different trophic levels. *Diversity and distributions* 21: 1-12.
- MATIAS M.G., UNDERWOOD A.J. & COLEMAN R.A., 2007 Interactions of components of habitats alter composition and variability of assemblages. *Journal of animal ecology* 76: 986-994.
- McKINNON J.G., GRIBBEN P.E., DAVIS A.R., JOLLEY D.F. & WRIGHT J.T., 2009 Differences in soft-sediment macrobenthic assemblages invaded by *Caulerpa taxifolia* compared to uninvaded habitats. *Marine ecology progress series* 380: 59-71.
- MEINERS S.J., PICKETT S.T.A. & CADENASSO M.L. 2001 Effects of plant invasions on the species richness of abandoned agricultural land. *Ecography* 24: 633-644.
- MINEUR F., ARENAS F., ASSIS J., DAVIES A.J., ENGELEN A.H., FERNANDES F., MALTA E., THIBAUT T., VAN NGUYEN T., VAZ-PINTO F., VRANKEN S., SERRÃO E.A. & DE CLERCK O., 2015 European seaweeds under pressure: consequences for communities and ecosystem functioning. *Journal of sea research* 98: 91-108.
- MONTEIRO C.A., ENGELEN A.H. & SANTOS R.P., 2009. Macro and mesoherbivors prefer native seaweeds over the invasive brown seaweed *Sargassum muticum*: a potential regulating role on invasions. *Marine biology* 156: 2505-2515.
- MOORE P.G., 1978 Turbidity and kelp holdfast Amphipoda. I. Wales and S.W. England. *Journal of experimental marine biology and ecology* 32 (1): 53-96.
- MORSE D.R., LAWTON J.H., DODSON M.M. & WILLIARNSON M.H., 1985 Fractal dimension of vegetation and the distribution of arthropod body length. *Nature* 314: 731-733.
- MUNARI C., BOCCHI N. & MISTRI M., 2015 Epifauna associated to the introduced *Gracilaria* vermiculophylla (Rhodophyta; Florideophyceae: Gracilariales) and comparison with the native *Ulva rigida* (Chlorophyta; Ulvophyceae: Ulvales) in an Adriatic lagoon. *Italian* journal of zoology 82(3): 436-445.
- NORTON T.A., 1976 Why is Sargassum muticum so invasive? British phycological journal 11: 197-198.
- NEIVA J., ASSIS J., COELHO N.V., FERNANDES F., PEARSON G.A. & SERRÃO E.A., 2015 Genes left behind: climate change threatens cryptic genetic diversity in the canopy-forming seaweed *Bifurcaria bifurcata*. *PLoS One* 10(7): e0131530.
- NORTON T.A. & BENSON M.R., 1983 Ecological interactions between the brown seaweed Sargassum muticum and its associated fauna. Marine biology 75: 169-177.
- PACCIARDI L., DE BIASI A.M. & PIAZZI L., 2011 Effects of *Caulerpa racemosa* invasion on soft-bottom assemblages in the Western Mediterranean Sea. *Biological invasions* 13: 2677-2690.
- PACIOS I., GUERRA-GARCÍA J.M., BAEZA-ROJANO E. & CABEZAS M.P., 2011 The nonnative seaweed *Asparagopsis armata* supports a diverse crustacean assemblage. *Marine* environmental research 71: 275-282.
- PIAZZI L., CECCHERELLI G. & CINELLI F., 2001 Threat to macroalgal diversity: effects of the introduced green alga *Caulerpa racemosa* in the Mediterranean. *Marine ecology progress series* 210: 149-159.
- PIELOU E.C., 1966 Shannon's formula as a measure of specific diversity: its use and measure. *American naturalist* 100: 463-465.
- PLOUGUERNÉ E., LE LANN K., CONNAN S., JECHOUX G., DESLANDES E. & STIGER V., 2006 Spatial and seasonal variation in density, reproductive status, length and phenolic content of the invasive brown macroalga *Sargassum muticum* (Yendo) Fensholt along the coast of Western Brittany (France). *Aquatic botany* 85: 337-344.
- RUIZ G.M., FOFONOFF P., HINES A.H. & GROSHOLZ E.D., 1999 Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. *Limnology and oceanography* 44: 950-972.
- RUSSO A. R., 1989 Fluctuations of epiphytal gammaridean amphipods and their seaweed hosts on an Hawaiian algal reef. *Crustaceana* 57: 25-37.

- RUSSO A.R., 1990 The role of seaweed complexity in structuring Hawaiian epiphytal amphipod communities. *Hydrobiologia* 194: 1-12.
- SABOUR B., REANI A., EL MAGOURI H. & HAROUN R., 2013 Sargassum muticum (Yendo) Fensholt (Fucales, Phaeophyta) in Morocco, and invasive marine species new to the Atlantic coast of Africa. Aquatic invasions 8: 97-102.
- SALVATERRA T, GREEN D.S., CROWE T.P. & O'GORMAN E.J., 2013 Impacts of the invasive alga *Sargassum muticum* on ecosystem functioning and food web structure. *Biological invasions* 15: 2563-2576.
- SÁNCHEZ-MOYANO J. E., ESTACIO F.J., GARCIA-ADIEGO E.M. & GARCIA-GÓMEZ J.C., 2001
 Effect of the vegetative cycle of *Caulerpa prolifera* on the spatio-temporal variation of invertebrate macrofauna. *Aquatic botany* 70: 163-174.
- SCHAFFELKE B. & HEWITT C.L., 2007 Impact of introduced seaweeds. *Botanica marina* 50: 397-417.
- SCHAFFELKE B., SMITH J.E. & HEWITT C.L., 2006 Introduced macroalgae a growing concern. *Journal of applied phycology* 18: 529-541.
- SCHMIDT A.L. & SCHEIBLING R.E., 2006 A comparison of epifauna and epiphytes on native kelps (*Laminaria* species) and invasive alga (*Codium fragile* ssp. *tomentosoides*) in Nova Scotia, Canada. *Botanica marina* 49: 315-330.
- SCHREIDER M.J., GLASBY T.M. & UNDERWOOD A., 2003 Effects of height on the shore and on the shore and complexity of habitat on abundances of amphipods on rocky shores in New South Wales, Australia. *Journal of experimental marine biology and ecology* 293: 57-71.
- SHANNON C. & WEAVER W., 1963 *The mathematical theory of communication*. Urbana, Illinois, University Illinois Press, 117p.
- SIEBURTH M.C.N. & CONOVER J.T., 1965 *Sargassum tannin*, an antibiotic which retards fouling. *Nature* 208: 52-53.
- SOLER-HURTADO M.M. & GUERRA-GARCÍA J.M., 2011 Study of the crustacean community associated to the invasive seaweed *Asparagopsis armata* Harvey, 1855 along the coast of the Iberian Peninsula. *Zoologica baetica* 22: 33-49.
- STACHOWICZ J.J., TERWIN J.R., WHITLATCH R.B. & OSMAN R.W., 2002 Linking climate change and biological invasion: ocean warming facilitates non indigenous species invasions. *Proceedings of the national academy of sciences of the United States of America* 99: 15497-15500.
- STÆHR P.A., PEDERSEN M.F., THOMSEN M.S., WERNBERG T. & KRAUSE-JENSEN D., 2000 Invasion of *Sargassum muticum* in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. *Marine ecology progress series* 207: 79-88.
- STEINBERG P.D., DE NYS R. & KJELLEBERG S., 1998 Chemical inhibition of epibiota by Australian seaweeds. *Biofouling* 12: 227-244.
- STIGER V., DESLANDES E. & CLAUDE E.P., 2004 Phenolic contents of two brown algae, *Turbinaria ornate* and *Sargassum mangarevense* on Tahiti (French Polynesia): interspecific, ontogenic and spatio-temporal variations. *Botanica marina* 47: 402-409.
- TANAKA M.O. & LEITE F.P.P., 2003 Spatial scaling in the distribution of macrofauna associated with *Sargassum stenophyllum* (Mertens) Martius: analyses of faunal groups, gammarid life habits and assemblage structure. *Journal of experimental marine biology and ecology* 293: 1-22.
- TANIGUCHI H., NAKANO S. & TOKESHI M., 2003 Influences of habitat complexity on the diversity and abundance of epiphytic invertebrates on plants. *Freshwater biology* 48: 718-728.
- TAYLOR R B., 1998a Density, biomass and productivity of animals in four subtidal rocky reef habitats: the importance of small mobile invertebrates. *Marine ecology progress series* 172: 37-51.
- TAYLOR R.B., 1998b Seasonal variation in assemblages of mobile epifauna inhabiting three subtidal brown seaweeds in northeastern New Zealand. *Hydrobiologia* 361: 25-35.
- TAYLOR R.B. & COLE R.G. 1994 Mobile epifauna on subtidal brown seaweeds in northeastern New Zealand. *Marine ecology progress series* 115: 271-282
- THOMSEN M., WERNBERG T. & SCHIEL D., 2015 Invasions by non-indigenous species. *In:* CROWE T.P. & FRID C.L. (eds), *Marine Ecosystems: Human Impacts on Biodiversity, Functioning and Services.* Cambridge University Press, pp. 274-331.
- TIPPETS K., 2002 The effects of *Caulerpa taxifolia* on invertebrate abundance in Agua Hedionda Lagoon, California. Report for University of California at Berkeley Environmental Sciences Senior Seminar, California, pp. 8.

- VALENTINE J.P., MAGIEROWSKI R.H. & JOHNSON C.R., 2007 Mechanisms of invasion: Establishment, spread and persistence of introduced seaweed populations. *Botanica marina* 50: 351-360.
- VEIGA P., RUBAL M. & SOUSA-PINTO I., 2014 Structural complexity of macroalgae influences epifaunal assemblages associated with native and invasive species. *Marine environmental research* 101: 115-123.
- VIEJO R.M., 1999 Mobile epifauna inhabiting the invasive *Sargassum muticum* and two local seaweeds in northern Spain. *Aquatic Botany* 64: 131-149.
- VITOUSEK P.M. & WALKER L.R., 1989 Biological invasion by *Myrica faya* in Hawaii: Plant demography, nitrogen-fixation, ecosystem effects. *Ecological monographs* 59: 247-265.
- WERNBERG T., THOMSEN M.S., STÆHR P.A. & PEDERSEN M.F., 2004 Epibiota communities of the introduced and indigenous macroalgal relatives *Sargassum muticum* and *Halidrys siliquosa* in Limfjorden (Denmark). *Helgoland marine research* 58: 154-161.
- WIKSTRÖM S.A. & KAUTSKY L., 2004 Invasion of a habitat-forming seaweed: effects on associated biota. *Biological invasions* 6: 141-150.
- WILLIAMS S.L. & SMITH J.E., 2007 A global review of the distribution, Taxonomy and impacts of introduced seaweeds. *Annual review of ecology, evolution and systematics* 38: 327-359.
- WITHERS R.G., FARNHAM W.F., LEWEY S., JEPHSON N.A., HAYTHORN J.M. & GRAY P.W.G., 1975 The epibonts of *Sargassum muticum* in British waters. *Marine biology* 31: 79-86.
- WRIGHT J.T., DE NYS R., POORE A.G.B. & STEINBERG P.D., 2004 Chemical defense in a marine alga: Heritability and the potential for selection by herbivores, *Ecology* 85: 2946-2959.