Cryptogamie, Algologie, 2016, 37 (4): 233-255 © 2016 Adac Tous droits réservés

# Connectivity of populations of the seaweed Cystoseira amentacea within the Bay of Marseille (Mediterranean Sea): genetic structure and hydrodynamic connections

Thierry THIBAUT  $a^*$ , Lorraine BOTTIN $^d$ , Didier AURELLE  $^c$ , Charles-François BOUDOURESQUE  $^a$ , Aurélie BLANFUNÉ  $^a$ , Marc VERLAQUE  $^a$ , Ivane PAIRAUD  $^b$  & Bertrand MILLET  $^a$ 

<sup>a</sup> Aix-Marseille Université, CNRS, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), UM 110, 13288 Marseille, France

<sup>b</sup> Institut Français de Recherche pour l'Exploitation de la Mer, Laboratoire Environnement Ressources Provence Azur Corse, BP 330, F-83507 La Seyne-sur-Mer, France.

<sup>c</sup>Aix Marseille Univ, Univ Avignon, CNRS, IRD, IMBE, Marseille, France.

<sup>d</sup> Université Nice Sophia Antipolis, CNRS, FRE 3729 ECOMERS, Parc Valrose, 28 avenue Valrose, 06108 Nice, France

**Abstract** – The brown alga *Cystoseira amentacea* (Phaeophyceae, kingdom Stramenopiles) constitutes an extensive belt in the shallowest horizon of the infralittoral (the infralittoral fringe), in the Mediterranean Sea. Hydrodynamic modelling was used to infer connectivity between populations of C. amentacea of the Bay of Marseille (Provence, France, NW Mediterranean) and to test the correlation between genetic and hydrodynamic connectivity. We genotyped 183 individuals from six populations at six microsatellite loci. Current fields were computed at a fine resolution by a 3D numerical model simultaneously utilizing the local winds, the Rhone River inputs and offshore circulation. The Lagrangian trajectories of the propagules (zygotes, or rafts) were computed with the ICHTHYOP software, for both NW and SE strong wind forcing (11-12 m·s<sup>-1</sup>). Cystoseira amentacea displayed a strong and significant genetic structure, not correlated with the geographic distance, i.e. a lack of isolation by distance (IBD). The pairs of sites with the lowest  $F_{ST}$  were those connected by the current patterns. The time needed for a zygote or a raft to travel from one location to another ranged from 4 to 18 h (i.e. within the survival time of a zygote) and for distances of up to 23 km. Despite the very low dispersal capability of the zygotes, long-distance dispersal is therefore possible. Several non-exclusive processes can account for the genetic structure of C. amentacea populations, such as step-by-step local dispersal, long-distance dispersal of zygotes and rafts by currents, during storms, and the "priority effect", i.e. the importance of the timing of arrival of the propagules.

Hydrodynamic modelling / Lagrangian transport / connectivity / genetic differentiation / Cystoseira amentacea / Mediterranean Sea

<sup>\*</sup> Corresponding author: thierry.thibaut@univ-amu.fr

Résumé - Cystoseira amentacea (Phaeophyceae, Stramenopiles) se développe en ceintures au niveau de la mer le long du littoral rocheux méditerranéen. Une modélisation hydrodynamique a été utilisée pour étudier la connectivité génétique et hydrodynamique entre des populations de C. amentacea de la Baie de Marseille (Provence, France, Méditerranée nord-occidentale). 183 individus de six sites ont été génotypés avec six locus microsatellites. Les champs de courants, modélisés à grande échelle par un modèle numérique 3D, ont été forcés par l'influence des vents locaux, du Rhône et de la circulation du large. Les trajectoires lagrangiennes des propagules (zygotes ou radeaux) ont été modélisées avec le logiciel ICHTYOP sous les deux régimes de vents dominants dans la baie ; un vent de Sud-Est et un vent de Nord-Ouest (11-12 m·s<sup>-1</sup>). Les populations de *Cystoseira amentacea* sont significativement et fortement structurées et ne sont pas corrélés avec les distances géographiques ; il n'y a donc pas d'isolation par la distance (IBD). Les couples de populations ayant les  $F_{ST}$  les plus faibles sont celles connectés les courants. Le temps mis par des propagules pour voyager entre certains sites de la baie varie entre 4 et 18 h (ce qui correspond au temps de survie d'un zygote), avec une distance maximale de 23 km. En dépit de la faible capacité supposée de dispersion des zygotes, des dispersions lointaines apparaissent probables. Plusieurs hypothèses non-exclusives peuvent expliquer la structure génétique des populations de C. amentacea, telles que la dispersion de proche en proche, la dispersion lointaine de zygotes ou de radeaux par les courants pendant des coups de vents et le "priority effect" (i.e. la priorité au premier arrivant).

Modélisation hydrodynamique / transport lagrangien / connectivité / différenciation génétique / Cystoseira amentacea / Méditerranée

#### INTRODUCTION

Coastal ecosystems are deeply affected by the cumulative effects of exploitation, habitat destruction, pollution, biological invasions and climate change (e.g. Worm *et al.*, 2006; Halpern *et al.*, 2008; Jackson, 2008; Waycott *et al.*, 2009; Boudouresque & Verlaque, 2012). This global trend is visible in various ecosystems from tropical coral reefs to temperate kelp and fucoid habitat-forming stands (Jackson, 2008) and is linked to the increasing demographic pressures on these areas. This trend could have significant ecological and socio-economic consequences as these ecosystems are of major direct and indirect economic value (Balmford *et al.*, 2002; Barbier *et al.*, 2010; De Groot *et al.*, 2012). Efficient conservation and management of coastal ecosystems are therefore needed.

Connectivity is a major factor that shapes the evolution of species and communities. Population connectivity corresponds to the exchange of individuals among geographically separated populations, whereas genetic connectivity implies dispersal and reproduction (Cowen & Sponaugle, 2009). Connectivity has important consequences with regard to population demography and genetic evolution (Lowe & Allendorf, 2010). For most marine species, the larval or zygotic phase is the main dispersal stage, especially for sessile organisms. The small size of the propagules (larvae and zygotes, eggs) and the vast fluid environment makes it difficult to make direct assessments of connectivity for many marine species (Cowen & Sponaugle, 2009). Genetic data can however be used to estimate the scale of population connectivity. The study of oceanographic transport is an alternative approach that can be integrated with seascape genetics (e.g. Galindo *et al.*, 2006; Foster *et al.*, 2012). This strategy allows the identification of barriers and vectors of dispersal and

can integrate the biological properties of the dispersal phase (life duration of larvae or zygotes, spawning date, swimming behaviour, Cowen et al., 2006). Conversely, a discrepancy between genetic data and hydrodynamic modelling could be due to specific behaviour of the propagules, to local limits to recruitment or to the effect of chaotic genetic patchiness (Arnaud-Haond et al., 2008). Estimating connectivity for ecologically key species will provide information on the potential responses of the associated ecosystems to environmental fluctuations and will help in management choices. The spatial genetic structure is a key parameter in conservation biology, especially when dealing with threatened, long-living, habitat-forming species (e.g. Procaccini et al., 2002; Arnaud-Haond et al., 2007; Coleman et al., 2009; Alberto et al., 2010; Ledoux et al., 2010a, 2010b; Serra et al., 2010; Mokhtar-Jamaï et al., 2011). Genetic connectivity is important as it sustains local genetic diversity and can help in recolonization following disturbances. As a consequence, genetic structure and connectivity should be taken into account in management strategies and in the design of marine protected areas (e.g. Palumbi, 2003; Sale et al., 2010; Andrello et al., 2013).

Along the temperate rocky coasts, the large canopy-forming kelps (Laminariales, Phaeophyceae, Stramenopiles) and fucoids (Fucales, Phaeophyceae, Stramenopiles) represent the dominant species in pristine environments (Dayton, 1985; Steneck et al., 2002; Schiel & Foster, 2006). Kelp and fucoids are autogenic ecosystem engineers (sensu Jones et al., 1994) forming three-dimensional habitats that provide shelter, food and nursery for a wide range of species; they provide high primary production, which plays a role in supporting diversified functional compartments and trophic levels; they attenuate wave action in the case of the largest shallow-water species (e.g. Foster & Schiel, 1985; Harrold & Pearse, 1987; Komatsu & Murakami, 1994; Steneck et al., 2002; Estes et al, 2004; Schiel & Foster, 2006). The decline of kelps and fucoids is a worldwide phenomenon due, directly or indirectly, to human activities (e.g. Steneck et al., 2002; Diez et al., 2003; Helmuth et al., 2006; Worm & Lotze, 2006; Airoldi & Beck, 2007; Coleman et al., 2008; Hawkins et al., 2008; Wernberg et al., 2010; Phillips & Blackshaw, 2011; Schiel, 2011; Wernberg et al., 2011; Lamela-Silvarey et al., 2012; Raybaud et al., 2013; Filbee-Dexter & Scheibling, 2014).

In the Mediterranean Sea, the species of the genus Cystoseira C. Agardh are habitat-forming plants, dominating several benthic assemblages, from the sea surface (infralittoral fringe, the shallowest level of the infralittoral zone) down to the circalittoral zone (sensu Pérès, 1982) (e.g. Feldmann, 1937; Molinier, 1960; Pignatti, 1962; Boudouresque, 1971a, 1971b; Verlaque, 1987; Ballesteros, 1988, 1990a,b; Giaccone et al., 1994). Loss of Mediterranean fucoid algae has been reported throughout the basin, as a consequence of habitat destruction, eutrophication and overgrazing by sea urchins and fish, leading to a shift to environments of lesser structural complexity, such as algal turfs and barren grounds dominated by filamentous and encrusting species, where sea urchin density is a driver of habitat homogenization (e.g. Munda, 1974, 1982, 1993; Cormaci & Furnari, 1999; Thibaut et al., 2005; Devescovi & Iveša, 2007; Airoldi et al., 2008; Falace et al., 2010; Fraschetti et al., 2011; Giakoumi et al., 2012; Sala et al., 2012; Bianchi et al., 2014; Thibaut et al., 2015a,b; but see Thibaut et al., 2014, 2016). These shifts are associated with a loss of species diversity, ecosystem diversity and ecosystem functions and services (Sala & Knowlton 2006).

Along the whole of the French Mediterranean coast, two closely related Mediterranean *Cystoseira* species, closely related genetically, are restricted to the infralittoral fringe, from the mean sea level down to less than 1 m depth):

C. mediterranea Sauvageau, in the western part, along the French Catalonian coast, and C. amentacea (C. Agardh) Bory de Saint-Vincent (synonym: C. amentacea var. stricta Montagne) in Provence, French Riviera and Corsica (Sauvageau, 1912; Feldmann, 1937; Epiard-Lahaye et al., 1987; Thibaut et al., 2005; Susini, 2006; Draisma et al., 2010; Robvieux, 2013; Thibaut et al., 2014). Cystoseira amentacea, which is widely distributed in the Mediterranean (Ribera et al., 1992, Cormaci et al., 2012, Guiry & Guiry, 2016), is considered to have an important ecological role within the framework of the European Union (EU) Water Framework Directive (WFD, 2000) (e.g. Orfanidis et al., 2001; Ballesteros et al., 2007; Orfanidis et al., 2011; Blanfuné et al., 2016, 2017). Cystoseira amentacea is currently listed as a "strictly protected species" under the Bern Convention (1979: Annex I), and "endangered or threatened species" in the Barcelona Convention (2013: Annex II).

The species, which possesses a caespitose vegetative apparatus, up to 40 cm high, with a basal holdfast a few centimetres wide, forms extensive stands on shallow wave-exposed rocky substrates (Bellan-Santini, 1963; Robvieux, 2013; Thibaut *et al.*, 2014) and is one of the most productive Mediterranean seaweeds (Susini, 2006).

Cystoseira amentacea is slightly declining, at the scale of the French Mediterranean coast, but it has undergone its most severe decline, with a loss of ~54% of the historical populations at least since the 1960s, around the city of Marseille (western Provence), because of an episode of heavy eutrophication and habitat destruction that led to the fragmentation and isolation of its populations (Bellan-Santini 1968; Bellan & Bellan-Santini, 1972; Soltan et al., 2001; Thibaut et al., 2014). The water circulation in the Bay of Marseille is mainly controlled by the wind regimes, but also by the Rhône River seasonal floods (Fraysse et al., 2014) and periodic incursions on the continental shelf of the Northern Current, which flows westward along the continental slope from the Ligurian Sea to the Balearic Sea (Petrenko, 2003; Pairaud et al., 2011; Pinazo et al., 2013). The availability of knowledge on water circulation, along with the presence of C. amentacea in several places in this area, make the Bay of Marseille an interesting case study to test the correlation between hydrodynamics and genetic differentiation. The Bay of Marseille is an area where a significant and complex genetic structure has been observed for various benthic species (e.g. Ledoux et al., 2010a, 2010b; Mokhtar-Jamaï et al., 2011). The population genetics of *Cystoseira* species has been poorly studied. Only a preliminary study using RAPDs, and needing confirmation with more reliable markers, has focused on C. amentacea. It suggested a long-distance pattern of dispersal in spite of a putative low dispersal capability (Susini et al., 2007). Genetic differentiation may not solely depend on geographic distance, but also on the orientation and strength of currents, which can promote or prevent gene flow (Engelen et al., 2001; Billot et al., 2003). Therefore, studying the potential link between hydrodynamics and genetic differentiation is required for a better understanding of the genetic structure of this species.

The aims of this work were (i) to use hydrodynamic modelling to infer connectivity between populations of *C. amentacea* around Marseille, and (ii) to test the correlation between genetic and hydrodynamic connectivity.

### MATERIAL AND METHODS

## Study site

The study site is the Bay of Marseille (western Provence, southern France) (Fig. 1). The study of the distribution of *C. amentacea* was completed in May 2008 (Thibaut *et al.*, 2014). The species occupies 45 km of coast (at 1/2 500 scale), mainly forming fragmented populations.

## Population genetics

Six locations from the Bay of Marseille and nearby locations were sampled in May 2008 for genetic analyses (Table 1; Fig. 1). One hundred and eighty three individuals have been genotyped at six microsatellite loci (number 24, 27, 33, 35, 51, 58), as described in Robvieux *et al.* (2012). The parameters describing the genetic diversity were computed with FSTAT v2.9.3.2 (Goudet, 2001): observed and expected heterozygosity, and the fixation index F<sub>IS</sub> were computed with the estimator of Weir & Cockerham (1984). The deviation from panmixia was tested with an exact test performed in GENEPOP 4.0 (Rousset, 2008) with default parameters.

Pairwise  $F_{ST}$  were computed with GENEPOP with the estimator of Weir & Cockerham (1984). Their significance was tested with an exact test as implemented

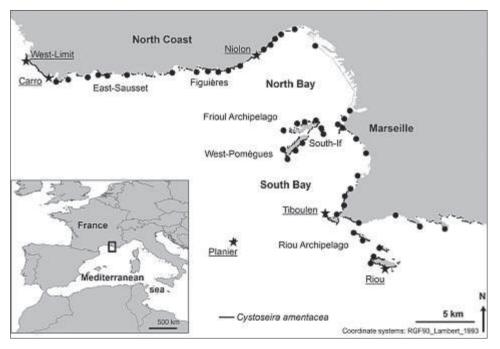



Fig. 1. Map of location of the 54 stations (dots) located around and near the Bay of Marseille and taken into account in the ICHTHYOP computations (modelling); *C. amentacea* can be present (black line) or absent at these modelling stations. Stars refer to the six sampling sites for genetic analyses of *C. amentacea* and underlined names correspond to the names of the sampling sites, as in Table 1.

in GENEPOP with default parameters. A clustering analysis was performed with the STRUCTURE software (Pritchard *et al.*, 2000), with the admixture model, independent allelic frequencies, a burn-in of 500000 iterations followed by 200000 iterations with K varying from 1 to 8 and 20 runs for each K value. The number of clusters was estimated on the basis of the method of Evanno *et al.* (2005) and the results of the different runs were combined in STRUCTURE HARVESTER (Earl & vonHoldt, 2012). As a complementary approach to STRUCTURE, and in order to take into account the possible effect of inbreeding or selfing, we studied the genetic structure of populations with the INSTRUCT software (Gao *et al.*, 2007). We used the model for the inference of population structure only with admixture and then the model with inference of population inbreeding coefficients. We used five chains with 1000000 generations and a burn-in of 500000 generations and with K varying from 1 to 8. The analysis of the results was performed with the CLUMPAK software (Kopelman *et al.*, 2015).

We first tested the correlation between genetic and geographical distance (i.e. Isolation By Distance or IBD) and the oceanographic connections by comparing the ratio  $F_{ST}/(1-F_{ST})$  with the logarithm of spatial distance or the oceanographic time (Rousset, 1997). Spatial distance was computed as the shortest way by sea connecting two stations. This distance varied between 2 and 36 km. Distance means the shortest distance by sea, not the shortest distance as the crow flies. Oceanographic times were measured as a proxy of oceanographic connections.

We then tested the correlation between genetic distance and hydrodynamic connectivity by comparing  $F_{ST}/(1-F_{ST})$  with the lack of connection (i.e. 1 - proportion of connection) between sites according to the wind periods (see below for the wind regimes). In both cases, the correlations between matrices were tested with a Mantel test implemented in the IBD Web Service v.3.23 (Jensen *et al.*, 2005) with 1000 permutations.

# **Modelling**

Concerning the hydrodynamics, we experimented with a preliminary modelling study of the hydrodynamics in the Bay of Marseille, using the 3D-model POM (Princeton Ocean Model) on a  $250 \times 350$  horizontal grid with a fine horizontal resolution of 100 m and 11 vertical sigma levels. The Bay of Marseille (the central bay in and around Marseille) exhibits spatial heterogeneity of the wind-induced hydrodynamic structures, and high variability at short scales according to the local wind direction (Pradal & Millet, 2006, 2013).

Then, taking into account more realistic forcing (physical process influencing the simulation), a version of the MARS3D model (3D hydrodynamic Model for Applications at Regional Scale, version V8; Lazure & Dumas, 2008), called RHOMA (for Rhône-Marseille Area), was implemented over a more extensive domain, extending from the Rhône River to Cap Sicié (near Toulon, eastern Provence), with a horizontal resolution of 200 m (Pairaud *et al.*, 2011).

## Local wind regime

We considered the wind statistics computed over the inter-annual 30-year period 1971-2000 at the Météo France meteorological station at Marignane, located 20 km northwest of the central bay. The corresponding wind rose (Fig. 2) highlights two prevailing NW 320°-340° and SE 100°-160° wind sectors, regardless of the

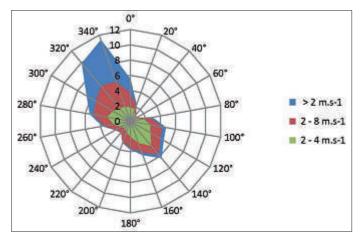



Fig. 2. Wind rose measured at the Météo France station at Marignane, over the 1971-2000 period; colours refer to the three cumulative classes of wind intensity: 2-4, 2-8 and > 2 m·s<sup>-1</sup> and the corresponding frequencies of occurrence (0% through 12%) are reported within the diagram.

three classes of wind intensity considered: between 2 and 4 m·s<sup>-1</sup>, 2 and 8 m·s<sup>-1</sup>, and all intensities > 2 m·s<sup>-1</sup> combined. The frequencies of occurrence in time over the 1971-2000 period, for wind events greater than 2 m·s<sup>-1</sup>, are 21.1% and 16.2%, for the NW 320°-340° and SE 100°-160° sectors, respectively.

## Marine current fields

Current and salinity fields were computed at a fine resolution by a 3D numerical model simultaneously forced (i.e. model simultaneously utilizing different outputs or parameters influencing the studied model) by the atmosphere, in particular local winds, the Rhone River inputs and offshore circulation. Therefore, currents, temperature and salinity fields have been computed by using the RHOMA version of the MARS3D model on a 503 × 240 horizontal grid extending from the Rhône River to Cap Sicié (near Toulon, eastern Provence), with a fine horizontal resolution of 200 m, 30 vertical sigma layers and a time step fixed at 60 s. This model, described in detail in Pairaud et al. (2011), takes into account the forcing by the north-western Mediterranean general circulation, by means of a nesting strategy with the large scale MARS3D-MENOR configuration (1.2 km resolution). The model is forced every 3 h at its upper boundary by atmospheric fluxes (modelled wind field, rain and heat fluxes) from the MM5 meteorological model (3 km resolution). In addition, the model is forced by the average daily inputs from the Rhône River, measured at the Beaucaire station and provided by the Compagnie Nationale du Rhône. The model results were validated both statistically and on selected processes for the two years, 2007 and 2008, by comparisons with *in situ* measurements of temperature, salinity, currents and satellite images.

We considered the set of results computed by the model RHOMA during the seasonal 4-month period from May to August 2008, which was considered as the season of sexual reproduction for *C. amentacea*. Then, we selected within this 4-month period two sets of current, temperature and salinity fields liable to be considered as representative of both typical prevailing NW and SE wind situations (Fig. 2). A first 30-hour period from 6 June (00:00, Local Time LT) to 7 June (6:00, LT) 2008 was chosen as characterized by intense and well-established current structures induced by a strong NW-330° wind, reaching a maximum speed of 11 m·s<sup>-1</sup>. A second 30-hour

period from 26 May (12:00, LT) to 27 May (18:00, LT) 2008 was chosen as characterized by intense and well-established current structures induced by a strong SE  $130^{\circ}$ - $140^{\circ}$  wind, reaching a maximum speed of  $12 \text{ m} \cdot \text{s}^{-1}$ .

# Lagrangian transport

The Lagrangian trajectories of the propagules (zygotes or rafts) of *C. amentacea* through the Bay of Marseille were computed with the ICHTHYOP software (Lett *et al.*, 2008). In our study, the ICHTHYOP model was run taking into account the 3-hour resolution fields of current, temperature and salinity previously computed by the RHOMA model for both selected NW and SE wind periods. Each computation took into account the same initial condition for its source point: a patch of 500 particles featuring a diameter of 200 m and a subsurface thickness of 20 cm. In addition, we considered, in each ICHTHYOP computation, passive particles (zygotes or rafts) without any biological behaviour, an extremely low density of 1 kg.m<sup>-3</sup> and no sinking velocity.

Fifty-four source points have been considered in the ICHTHYOP computations, which were located around the bay on the basis of the relevance of their respective situations (Fig. 1). We checked with ICHTHYOP the computations of both direct and inverse trajectories of surface passive particles issued from (for direct trajectories) or targeting (for inverse trajectories) each of the 54 source points (Fig. 1) considered and successively taking into account SE 130°-140° and NW 330° strong wind forcing situations.

## Past distribution of C. amentacea

We rebuilt the past shorelines suitable for C. amentacea from 20000 years BP to before the industrial age (200 years ago), using a 3D-spatial analysis of the depth contours (every 2 m) (data from the Service Hydrographique et Océanographique de la Marine). We calculated the slope of beaches along the current shoreline ( $\sim$ 1-2%), we calculated the slope along the past shorelines ( $\sim$ 120 m and  $\sim$ 50 m, corresponding to 20000 and 11000 years BP, respectively), and considered the probable location of river mouths at that time, in order to infer the putative presence of beaches (unsuitable substrate for C. amentacea) or of rocky substrates. For the modern period before the industrial age, we used the shoreline used in Thibaut *et al.* (2014). Maps of the possible suitable habitat for C. amentacea were made with  $\mathbb{R}$  ArcGIS 10.3.

#### RESULTS

## Population genetic structure and diversity

The parameters describing the levels of genetic diversity within populations are given in Table 1. The mean number of alleles per locus varied between 2.7 and 4.2 (total mean = 3.5, SD = 0.6). High and significant multilocus  $F_{IS}$  values were obtained at all the sites (Table 1).

Table 1. List of the samples used for genetic analyses. n: number of individuals; Na: mean number of alleles per locus,  $H_{obs}$ : observed heterozygosity,  $H_{exp}$ : expected heterozygosity,  $F_{IS}$ : fixation index with its significance on the basis of an exact test. \*\*\* indicates a p-value < 0.001. The indicated values are based on a mean over the six loci

| Name       | Latitude     | Longitude   | n  | Na  | $H_{obs}$ | $H_{exp}$ | $F_{IS}$ |
|------------|--------------|-------------|----|-----|-----------|-----------|----------|
| West Limit | 43°20'32.69N | 5°1'8.04E   | 30 | 2.8 | 0.35      | 0.43      | 0.21***  |
| Carro      | 43°19'39.15N | 5°2'30.67E  | 28 | 2.7 | 0.31      | 0.41      | 0.25***  |
| Niolon     | 43°20'21.83N | 5°15'35.42E | 34 | 3.5 | 0.34      | 0.41      | 0.18***  |
| Planier    | 43°11'51.29N | 5°13'46.76E | 31 | 4.2 | 0.38      | 0.48      | 0.20***  |
| Tiboulen   | 43°12'36.39N | 5°20'4.38E  | 30 | 4.0 | 0.34      | 0.41      | 0.16***  |
| Riou       | 43°10'32.61N | 5°23'13.13E | 30 | 4.0 | 0.35      | 0.45      | 0.22***  |

The pairwise  $F_{ST}$  varied between 0.09 (for the comparison between Carro and Planier) and 0.34 (comparison between Carro and Tiboulen), and all the comparisons were significant (Table 2).

Table 2. Matrix of genetic differentiation and connectivity of C. amentacea within the Bay of Marseille: genetic differentiation ( $F_{ST}$ ) and frequencies of occurrence of hydrodynamic connections between the 6 populations. Wind statistics are provided by the Météo France station at Marignane over the 1971-2000 period (see text for details)

| Pairs of sampling sites | Distance<br>(km) | Genetic differentiation $F_{\it ST}$ | Connection frequencies (%) | Wind statistics at Marignane station |
|-------------------------|------------------|--------------------------------------|----------------------------|--------------------------------------|
| Carro – West Limit      | 2.6              | 0.15                                 | 0.162                      | SE 100°-160°                         |
| Niolon – West Limit     | 20.5             | 0.30                                 | 0                          | _                                    |
| Planier – West Limit    | 23.0             | 0.12                                 | 0.162                      | SE 100°-160°                         |
| Tiboulen – West Limit   | 29.3             | 0.24                                 | 0                          | _                                    |
| Riou – West Limit       | 35.5             | 0.28                                 | 0                          | _                                    |
| Niolon – Carro          | 17.6             | 0.26                                 | 0                          | _                                    |
| Planier - Carro         | 21.2             | 0.09                                 | 0.162                      | SE 100°-160°                         |
| Tiboulen – Carro        | 26.4             | 0.34                                 | 0                          | -                                    |
| Riou – Carro            | 32.9             | 0.24                                 | 0                          | _                                    |
| Planier-Niolon          | 15.5             | 0.13                                 | 0.212                      | NW 320°-340°                         |
| Tiboulen - Niolon       | 15.1             | 0.32                                 | 0                          | _                                    |
| Riou – Niolon           | 22.3             | 0.21                                 | 0                          | -                                    |
| Tiboulen – Planier      | 7.7              | 0.21                                 | 0                          | _                                    |
| Riou – Planier          | 12.8             | 0.15                                 | 0.162                      | SE 100°-160°                         |
| Riou – Tiboulen         | 6.6              | 0.28                                 | 0                          | _                                    |

All pairwise differentiation tests were significant. Three genetic clusters were identified with the STRUCTURE software according to the delta K (Fig. S1, see doi/107872/crya/v.37.iss4.2016.S1). The populations of *C. amentacea* can be grouped in a red cluster with the two most western populations located at West-Limit and Carro, a blue cluster grouping the populations at Niolon and Riou and a

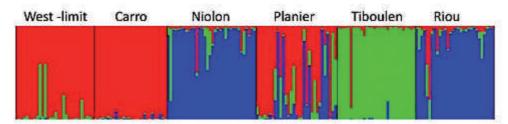



Fig. 3. Genetic structure of the six populations of *C. amentacea* collected around and near the Bay of Marseille, obtained with STRUCTURE.

green cluster with one population located at Tiboulen. The population of *C. amentacea* located at Planier Island cannot be attributed to one of these three clusters but is mainly shared between the red and blue clusters (Fig. 3).

Concerning the INSTRUCT analysis, the Gelman-Rubin statistics for the convergence of log-likelihood was 1.074 for the model of population structure only and 1.159 for the model with population inbreeding coefficients, which indicated a good convergence in both cases. The optimal K inferred by INSTRUCT was K=7 for the first model and K=8 for the second. Nevertheless, these K values correspond to a high individual admixture level (Fig. S2 for the model with inference of population inbreeding coefficients). We therefore analysed the INSTRUCT results at K=3, the value retained with STRUCTURE. At K=3 and for both models INSTRUCT gave results very similar to those obtained with STRUCTURE (Fig. S2, see doi/10.7872/crya/v.37.iss4.2016.S2).

## **Computed trajectories**

The time needed to travel from a site colonised by *C. amentacea* to another suitable site can be very short. For example, on May 27, under SE 130-140° strong wind (12 m·s<sup>-1</sup>) conditions, a particle originating at the neighbouring of Planier Island takes 12 h to reach Carro or West-Limit. It can also take 12 h between Planier Island and East-Sausset. Under the same wind conditions, the travel time required can be e.g. 4 h between Riou and Planier, 4 h between Tiboulen and West Pomègues, 6 h between Tiboulen and South-If, and 18 h between Planier Island and Niolon (Fig. 4).

# Connectivity

The studied populations of *C. amentacea* are more connected by the water currents induced by the SE wind than currents induced by the NW wind (Fig. 4, Table 2).

Hydrodynamic connections are represented by the frequencies of occurrence for the corresponding wind situations. Therefore, we took into account only the connections linking together the two western stations, West-Limit and Carro, and those linking Planier Island to the other parts of the bay, except the Tiboulen station which connected with no other site. Zero frequency was applied to the other pairs of stations, since no connection clearly appeared between them from our computations (Table 2).

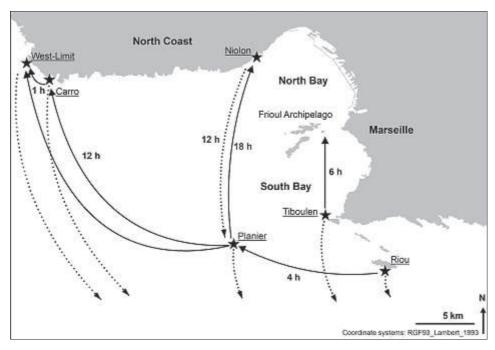



Fig. 4. Schematic map of strong wind-induced connections within the Bay of Marseille between the 6 studied sites, for surface passive particles, computed from MARS3D-RHOMA model and ICHTHYOP tool, over 30-hour periods and under both wind regimes: SE 130°-140° (maximum 12 m·s<sup>-1</sup>) in solid lines and NW 330° (maximum 11 m·s<sup>-1</sup>) in dotted lines. Adjacent to the arrows, the connection time computed on May and June 2008 under strong wind conditions (see Material and Methods). Stars refer to the six sampling sites for genetic analyses of *C. amentacea*.

Populations of *C. amentacea* at Planier are directly linked to the populations of the red cluster (West-Limit and Carro) under a SE wind regime and connected to the blue Cluster (Niolon) by water currents under a NW wind regime. The population located at Tiboulen is not directly connected by water currents to any of the other five populations, regardless the wind direction considered. The population located at Riou is only connected by a water current under the SE regime to Planier and subsequently to Carro and West-Limit (Fig. 4). Niolon is connected to Planier under the NW wind regime. Finally, the western part of the bay is not directly linked to the inner part of the bay, regardless the wind regime considered (Fig. 4).

While the Mantel test of correlation between genetic and geographical distances was not significant (p = 0.16), the correlation between the genetic and oceanographic connections was significant (p = 0.006). The relationship between  $F_{ST}$  and hydrodynamic patterns was non-linear but comprised two clearly distinct groups of comparison. Thus, the lowest  $F_{ST}$  (ranging from 0.09 to 0.15) were associated with the highest frequency of connection induced by the water currents, whereas the other site pairs with higher  $F_{ST}$  values (from 0.21 to 0.34) were not considered as connected on the basis of our simulations (Table 2). This corresponded well with the clusters obtained in Figure 3: Carro and West-Limit grouped together

and Planier appearing as admixed between different clusters. The populations sampled at Riou and Niolon (blue cluster in Figure 3) were not directly linked by water current and exhibited a high  $F_{ST}$  value (0.21) (Table 2).

## DISCUSSION

# **Short-distance dispersal**

The life cycle of *C. amentacea* contains only one diploid vegetative phase, often interpreted as a sporophyte. The reduction of the chromosomes number takes place during the formation of the gametes in the hermaphrodite conceptacles grouped within terminal receptacles. Reproduction occurs in late spring and early summer. Fertilization is oogamous, with thousands of bi-flagellate male gametes meeting female gametes in the vicinity of conceptacles; the zygotes (= eggs) are then dispersed (Hoek, *et al.*, 1995; Susini, 2006). The zygote diameter is ca. 100 μm, which is relatively large, so that the dispersal range is low (a few dozen centimetres), under calm conditions; the formation of the fertilisation membrane, which allows their fixation to the substrate, occurs after 12 h, the first rhizoids appear after 48 h, and the embryo begins to increase in size after 7 days (Susini, 2006; Mangialajo *et al.*, 2012). The generation time is unknown. No vegetative multiplication was ever observed.

In the study area, *C. amentacea* displayed a strong genetic structure as observed for other Fucales (e.g. Tatarenkov *et al.*, 2007; Neiva *et al.*, 2014). Most connections were limited, which is consistent with the significant and high differentiation observed between all populations and with dissemination occurring mainly over short distances, step-by-step, due to the very low dispersal range of the zygotes (Mangialajo *et al.*, 2012).

# Long-distance dispersal

The relationship between  $F_{ST}$  and the oceanographic connection rate, even if very low, suggests that water currents can play a significant role by connecting distant populations. This can maintain an evolutionary connection between populations (i.e. belonging to the same genetic cluster), but probably with independent demography. The colonisation of man-made structures by C. amentacea has been observed up to 3.3 km from the nearest natural population, which confirms the possibility of dispersal at this distance (Thibaut et al., 2014). Our results confirm the connections between sites as much as 23 km apart (Table 2). The distribution of dispersal distances of C. amentacea is therefore probably leptokurtic, with a low mean dispersal distance, and the possibility of rare dispersal events at higher distances.

Long-distance dispersal of fertilized zygotes probably occurs under strong hydrodynamic conditions. However, due to the time of formation of the fertilisation membrane, allowing their fixation to the substrate, and the beginning of the zygote development (Susini, 2006), the successful fixation window ranges between 12 and 48 h after fertilisation. Consequently, the connectivity between distant sites involves

a transport time falling within this time interval, which is consistent with our results. During storms, the buoyancy of fertilised zygotes is highly probable. Deciduous branches of *C. amentacea* are negatively buoyant, so that they cannot be dispersed under calm conditions. However, rafts of Ectocarpales (Phaeophyceae) mucilage, species with aerocysts such as *Cystoseira compressa* or *Sargassum vulgare* (the other aerocyst-bearing species such as *C. barbata*, *S. acinarium* and *S. hornschuchii* are extinct in Western Provence, Thibaut *et al.*, 2015b), or recently shed *Posidonia oceanica* leaves (the aerarium of which is a network of lacunae filled with gas; Boudouresque *et al.* 2012) can include *C. amentacea* detached branchlets harbouring hundreds of fertile conceptacles, and putatively allow their long-distance dispersal. Both *C. compressa* and *P. oceanica* are common in the Bay of Marseille. Lastly, the dispersal of *C. amentacea* branches by animals (gulls) was also reported (Bartoli *et al.*, 1997).

## Genetic structure: the lack of IBD and the presence of distinct clusters

The genetic structure of *C. amentacea* in the Bay of Marseille was not correlated with the geographical proximity of the analysed populations. The lack of IBD in our data could be explained by four non-mutually exclusive hypotheses:

- (i) the reduced dispersal of this species could induce a spatial genetic structure at shorter distances than considered here,
- (ii) the presence of distinct genetic clusters can break the IBD pattern. It would therefore be interesting to test for spatial genetic structure in *C. amentacea* at short distances by considering spatially localized individuals in order to obtain better estimates of dispersal abilities (e.g. Ledoux et al. 2010a; Aurelle & Ledoux, 2013).
- (iii) the current genetic structure could reflect ancient genetic structures, at a time when the sea level was far below the current level and the shape of the coastline and of geographical barriers was different from the current one (see below),
- (iv) the genetic structure could correspond to chaotic genetic patchiness (e.g. Broquet  $\it et al., 2013$ ), thus reflecting the random arrival of differentiated cohorts, with a "priority effect" (see below), for individuals replenishing the population on a previously free substrate. This can induce a Wahlund effect which could partly explain the observed  $F_{\it IS}$  (Arnaud-Haond  $\it et al., 2008$ ).

Our results indicate that hydrodynamics is a better predictor of genetic differentiation than IBD. Our modelling of connectivity shows that the surface circulation induced by the two prevailing NW and SE wind regimes can explain, at least partly, the main patterns of genetic differentiation between the populations of C. amentacea in the Bay of Marseille. The correlation between hydrodynamics and genetic structuring has been observed in other studies on metazoans (Foster et al., 2012) and a correlation between larval dispersal and gene flow can be observed at coarse scales (see discussion in Hellberg, 2009). In Southern France, a survey of red coral (Corallium rubrum) populations indicated a significant correlation between genetic distance and both geographical distance and distances based on the major currents (Ledoux et al., 2010a,b). Nevertheless, this correlation is not always observed (e.g. Berry et al., 2012) which could point to an inappropriate study scale, as in IBD analyses. It may also be necessary to refine biological parameters in modelling. In the case of C. amentacea, we did not include the possibility of dispersal via gulls (Bartoli et al., 1997; Thibaut et al., 2014), which would have required a specific modelling approach. The significant correlation observed between hydrodynamics connectivity, based on zygotes and rafts only, and genetic connectivity, indicates that actual bird mediated dispersal could be rare enough not to invalidate this correlation or that it occurs at different spatial scales.

The high differentiation observed in the Bay of Marseille for C. amentacea is quite unusual at that scale for a marine species with a free dispersal stage. But it has been observed in some algal species, for even smaller scales, with a genetic differentiation driven by tidal dynamics (Engel et al., 2004; Krueger-Hadfield et al., 2013). Hereafter, we compare our results with other population genetics studies in the study area, despite differences in the depth ranges and the biology of the considered species. Significant genetic structure has been demonstrated, on the basis of mitochondrial DNA, for the cave mysid *Hemimysis margalefi* (crustaceans), with a genetic break between the north and south part of the Bay of Marseille (Lejeusne & Chevaldonné, 2006). The potential link between the western limit of the north coast and the southern islands observed in this study was not observed for H. margalefi. For the sea urchin Paracentrotus lividus, differentiation between the north coast and the Marseille areas was found, but as only two sites were sampled. the comparison is difficult (Penant et al., 2013). Conversely, for the teleost Apogon imberbis, weak and mostly non-significant differentiation was observed in the Bay of Marseille, through eight microsatellite loci (Muths et al., 2015): this could be linked to the duration of the larval phase of this species (18-24 days), which might hinder genetic differentiation at that scale. The studies most similar to the present one in terms of sampling sites, markers and differentiation patterns, dealt with the octocorals Corallium rubrum and Paramuricea clavata (Ledoux et al., 2010b; Mokhtar-Jamaï et al., 2011). In these two species, significant differences were observed for most pairwise comparisons. Nevertheless, even for these low dispersal species, the observed  $F_{ST}$  were lower than for *C. amentacea*. For *C. rubrum*, three clusters were observed in the Bay of Marseille (Ledoux *et al.*, 2010b): one corresponded to the western part of the north coast and to the area of Riou Island: this agrees with the connection evidenced here between Riou and West-Limit. A second cluster for C. rubrum grouped the other populations from the southern coast, and the third comprised only a population from the northern part of the Bay, close to Niolon. The isolation of the latter population is not in agreement with what was observed for C. amentacea. For P. clavata, the only locality from the northern coast appeared admixed between localities from the southern part of the Marseille area and a cluster with more distant samples from the Ligurian Sea (Mokhtar-Jamaï et al., 2011).

# Genetic structure: the possible role of the priority effect and historical events

It is worth noting that the possible arrival of a zygote does not imply a successful recruitment. Firstly, local populations produce millions of zygotes, and the vast majority of them will be unsuccessful in producing a new individual. Secondly, in suitable habitats, a very narrow and shallow fringe, the substrate is already occupied by a high density of individuals, with a continuous canopy (~100% percent cover). There is probably neither enough room nor enough light for recruits. The development of young individuals on old individuals (as epiphytes) is unknown in *C. amentacea*, but probable on the basal part, while recruitment coincides with the seasonal falling of the secondary axes. As a result, the current genetic pattern could reflect the "priority effect" i.e. the importance of the timing of arrival of the propagules.

When the habitat became suitable for *C. amentacea*, several thousand years ago, at the end of the Ice Age (Last Glacial Maximum), or more recently, after episodes of massive mortality such as long-lasting low sea level due to exceptionally high atmospheric pressure episodes, after exceptionally cold winters during the Little Ice Age, during the maximum level of pollution of the Bay of Marseille (from the late 19<sup>th</sup> to the late 20<sup>th</sup> century), etc., recolonization of the free areas was achieved by the first arriving zygotes. Subsequently, further arriving zygotes found the substrate occupied, so that their success was unlikely. The priority effect is thought to play a major role in the observed patterns of distribution of species and populations (see e.g. Lawler & Morin, 1993; Louette & Meester 2007; Geange & Stier 2009 and references therein).

Another explanation, which could be combined with the priority effect, would be that of chaotic genetic patchiness: in that case, the observed structure could be the consequence of random recruitment from differentiated propagule groups (e.g. through variance in reproductive success or collective dispersal; Broquet et al., 2013). One consequence of chaotic genetic patchiness is the observation of genetic structure at distances below the dispersal capability, which could be what we observed here. Nevertheless, the observation of a correlation between hydrodynamics and genetic differentiation does not point to a completely random process.

Twenty thousand years ago, at Last Glacial Maximum (LGM), the sea level was 120-130 m below the current sea level, and the shape of the coastline was very different (Fig. 5). Subsequently, the sea level rose from 120-130 m to 0.5 m below the current sea-level, 2000 years ago (Mohrange, 2003). Hard substrates suitable for *C. amentacea* were probably present, separated by unsuitable areas (beaches?), with a pattern different from the present one. The possible past distribution of *C. amentacea* indicates that the populations were probably already fragmented, which could have induced the formation of different genetic clusters which could still persist. Nevertheless this interpretation depends on the occurrence of *C. amentacea* in this area, 20000 years ago.

Did the distribution of C. amentacea follow the sea level rise, and genetic patterns therefore reflect ancient distribution patterns based on the ancient coastline shape? In fact, the sea level rise has been relatively rapid, with increases of up to 3.7 and 2.5 m per century, 14 000 and 12 000-11 000 years ago, respectively (Collina-Girard, 2003). Whether or not the C. amentacea belt, if present, was capable of shifting upwards is questionable. In addition, the mean annual Sea-Surface Temperature (SST) was ~8 °C lower during the LGM than today, in the study area (Kuhlemann et al., 2008). Although the lethal low temperature level of C. amentacea is unknown, its absence from such cold waters may be expected. In contrast, fucoids currently restricted to the North Atlantic Ocean, e.g. Fucus vesiculosus, probably occurred in the NW Mediterranean Sea, not only during the LGM, but also up to 6000 years ago (Assis et al., 2014). There is no direct competition between Fucus species and Cystoseira species, as the former thrive in the midlittoral zone and the latter in the infralittoral fringe. The co-occurrence in the same area of F. vesiculosus and of C. tamariscifolia, a species close to C. amentacea, has been documented in the northern Atlantic. In any case, the occurrence of C. amentacea in the study area is probably relatively recent, at the Holocene timescale; the colonization therefore proceeded from one or several distant, possibly southern and eastern Mediterranean refugia, potentially corresponding to distinct genetic clusters. In any case, the current persistence of previously differentiated clusters requires that current gene flow is restricted enough not to erase this differentiation.



Fig. 5. Current shoreline of the study area (above); blackline: suitable habitats for *C. amentacea* before the industrial age (two centuries ago). The contour of the shoreline when the sea-level was 50 m and 120 m below the current sea-level, ~11000 and ~20000 years BP, respectively (below). Dotted line: putative rocky shore (according to the current slope), suitable for macroalgae. Stars refer to the six sampling sites for genetic analyses of *C. amentacea*.

Do the observed genetic clusters correspond to past allopatric divergence or do they correspond to a more recent differentiation in the Marseille area? The aforementioned biological characteristics of *C. amentacea* could be favorable to the persistence of differentiated clusters. More detailed, multigenic approaches would be useful to obtain a better estimate of the level and time of divergence between clusters and the impact of past divergence on the current structure.

**Acknowledgements.** This work was funded by Agence de l'Eau Rhône Méditerranée & Corse (Pierre Boissery). The authors are indebted to Pauline Robvieux for laboratory assistance and Michael Paul, a native English speaker, for improvement of the English text.

#### REFERENCES

- AIROLDI L., BALATA D. & BECK M.W., 2008 The gray zone: relationships between habitat loss and marine diversity and their applications in conservation. *Journal of experimental marine biology and ecology* 366 (1): 8-15.
- AIROLDI L. & BECK M.W., 2007 Loss, status and trends for coastal marine habitats of Europe. *Oceanography and marine biology, Annual review* 45: 345-405.
- ALBERTO F., RAIMONDI P.T., REED D.C., COELHO N.C., LEBLOIS R., WHITMER A. & SERRÂO E. A., 2010 Habitat continuity and geographic distance predict population genetic differentiation in giant kelp. *Ecology* 91 (1): 49-56.
- ANDRELLO M., MOUILLOT D., BEUVIER J., ALBOUY C., THUILLER W. & MANEL S., 2013—Low connectivity between Mediterranean Marine Protected Areas: a biophysical modeling approach for the dusky grouper *Epinephelus marginatus*. *Plos One* 8 (7): 1-15 (e68564).
- ARNAUD-HAOND S., MIGLIACCIO M., DIAZ-ALMELA E., TEIXEIRA S., VAN DE VLIET M.S., ALBERTO F., PROCACCCINI G., DUARTE C.M. & SERRÂO E.A., 2007 Vicariance patterns in the Mediterranean Sea: east—west cleavage and low dispersal in the endemic seagrass *Posidonia oceanica*. *Journal of biogeography* 34 (6): 963-976.
- ARNAUD-HAOND S., VONAU V., ROUXEL C., BONHOMME F., PROU J., GOYARD E. & BOUDRY P., 2008 Genetic structure at different spatial scales in the pearl oyster (*Pinctada margaritifera cumingii*) in French Polynesian lagoons: beware of sampling strategy and genetic patchiness. *Marine biology* 155(2): 147-157.
- ASSIS J., SERRÃO E.A., CLARO B., PERRIN C. & PEARSON G.A., 2014 Climate-driven range shifts explain the distribution of gene pools and predict future loss of unique lineages in a marine brown alga. *Mollecular ecology* 23: 2797-2810.
- AURELLE D. & LEDOUX J.-B., 2013 Interplay between isolation by distance and genetic clusters in the red coral *Corallium rubrum*: insights from simulated and empirical data. *Conservation genetics* 14: 705-716.
- BALLESTEROS E., 1988 Estructura y dinámica de la comunidad de *Cystoseira mediterranea* Sauvageau en el Mediterráneo Noroccidental. *Investigación pesquera* 52: 313-334.
- BALLESTEROS E., 1990a Structure and dynamics of the community of *Cystoseira zosteroides* (Turner) C. Agardh (Fucales, Phaeophyceae) in the Northwestern Mediterranean. *Scientia marina* 54: 217-299.
- BALLESTEROS E., 1990b Structure and dynamics of the *Cystoseira caespitosa* Sauvageau (Fucales, Phaeophyceae) community in the North-Western Mediterranean. *Scientia marina* 54: 155-168
- BALLESTEROS E., TORRAS X., PINEDO S., GARCÍA M., MANGIALAJO L. & DE TORRES M., 2007 A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive. *Marine pollution bulletin* 55 (1): 172-180.
- BALLESTEROS, E., GARRABOU, J., HEREU, B., ZABALA, M., CEBRIAN, E. & SALA, E., 2009

   Deep-water stands of *Cystoseira zosteroides* C. Agardh (Fucales, Ochrophyta) in the Northwestern Mediterranean: Insights into assemblage structure and population dynamics. *Estuarine, coastal and shelf science* 82(3): 477-484.
- BALMFORD A., BRUNER A., COOPER P., COSTANZA R., FARBER S., GREEN R.E., JENKINS M., JEFFERISS P., JESSAMY V., MADDEN J., MUNRO K., MYERS N., NAEEM S., PAAVOLA J., RAYMENT M., ROSENDO S., ROUGHGARDEN J., TRUMPER K. & TURNER R.K., 2002 Economic reasons for conserving wild nature. *Science* 297: 950-953. BARBIER E.B., HACKER S.D., KENNEDY C., KOCH E.W., STIER A.C. & SILLIMAN B.R., 2010
- BARBIER E.B., HACKER S.D., KENNEDY C., KOCH E.W., STIER A.C. & SILLIMAN B.R., 2010

   The value of estuarine and coastal ecosystem services. *Ecological monographs* 81 (2): 169-193.
- BARCELONA CONVENTION, 2013 The Barcelona Convention for the protection of the marine environment and the coastal region of the Mediterranean. Protocol concerning specially protected areas and biological diversity in the Mediterranean. Annex II. List of endangered or threatened species. Tunis, Regional Activity Center for Specially Protected Areas publ.: 1-7.
- BARTOLI P., BOURGEAY-CAUSSE M. & COMBES C., 1997 Parasite transmission via a vitamin supplement. *BioScience* 47 (4): 251-253.
- BELLAN G. & BELLAN-SANTINI D., 1972 Influence de la pollution sur les peuplements marins de la région de Marseille. *In*: Ruivo M. (ed.), *Marine Pollution and Sea Life*. Surrey, Fishing News (Books) Ltd., pp. 396-401.

- BELLAN-SANTINI D., 1963 Etude quantitative du peuplement à *Cystoseira stricta* (Mont.) Sauv. Rapports et Procès-Verbaux des Réunions de la Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée 17 (2): 133-138.
- BELLAN-SANTINI D., 1968 Influence de la pollution sur les peuplements benthiques. Revue internationale d'océanographie médicale 10: 27-53.
- BERN CONVENTION, 1979 Convention on the conservation of European wildlife and natural habitats. Strasbourg, Council of Europe, European Treaty Series, 104.
- BERRY O., ENGLAND P., FAIRCLOUGH D., JACKSON G. & GREENWOOD J., 2012 Microsatellite DNA analysis and hydrodynamic modelling reveal the extent of larval transport and gene flow between management zones in an exploited marine fish (*Glaucosoma hebraicum*). Fisheries oceanography 21: 243-254.
- BIANCHI C.N., CORSINI-FOKA M., MORRÍ C. & ZENETOS A., 2014 Thirty years after: dramatic changes in the coastal marine ecosystems of Kos Island (Greece), 1981-2013. *Mediterranean marine science* 15: 482-497.
- BILLOT C., ENGEL C.R., ROUSVOAL S., KLOAREG B. & VALERO M., 2003 Current patterns, habitat discontinuities and population genetic structure: the case of the kelp *Laminaria digitata* in the English Channel. *Marine ecology progress series* 253: 111-121.
- BLANFUNE A., BOUDOURESQUE C.F., VERLAQUE M., BEQIRAJ S., KASHTA L., NASTO I., RUCI S. & THIBAUT T., 2016 Response of rocky shore communities to anthropogenic pressures in Albania (Mediterranean Sea): ecological status assessment through the CARLIT Method. *Marine pollution bulletin* 109 (1): 409-418.
- BLANFUNÉ A., THIBAUT T., BOUDOURESQUE C.F., MAČIĆ V., MARKOVIC L., PALOMBA L., VERLAQUE M. & BOISSERY P., 2017 The CARLIT method for the assessment of the ecological quality of European Mediterranean waters: relevance, robustness and possible improvements. *Ecological indicators* 72: 249-259.
- BOUDOURESQUE C.F., 1971a Contribution à l'étude phytosociologique des peuplements algaux des côtes varoises. *Vegetatio* 22 (1-3): 83-184.
- BOUDOURESQUE C.F., 1971b Recherches de bionomie analytique, structurale et expérimentale sur les peuplements benthiques sciaphiles de Méditerranée occidentale (fraction algale). La sous-strate sciaphile des peuplements de grandes *Cystoseira* de mode battu. *Bulletin du muséum d'histoire naturelle de Marseille* 31: 141-151 + 1 Table.
- BOUDOURESQUE C.F., BERNARD G., BONHOMME P., CHARBONNEL E., DIVIACCO G., MEINESZ A., PERGENT G., PERGENT-MARTINI C., RUITTON S. & TUNESI L., 2012 *Protection and conservation of* Posidonia oceanica *meadows*. Tunis, RAMOGE and RAC/SPA publ., 202 p.
- SPA publ., 202 p.
  BOUDOURESQUE C.F. & VERLAQUE M., 2012 An overview of species introduction and invasion processes in marine and coastal lagoon habitats. *Cahiers de biologie marine* 53 (3): 309-317.
- BROQUET T., VIARD F. & YEARSLEY J. M. (2013). Genetic drift and collective dispersal can result in chaotic genetic patchiness. *Evolution* 67(6): 1660-1675.
- COLEMAN M.A., GILLANDERS B.M. & CONNELL S.D., 2009 Dispersal and gene flow in the habitat-forming kelp, *Ecklonia radiata*: relative degrees of isolation across an east-west coastline. *Marine and freshwater research* 60(8): 802-809.
- COLEMAN M.A., KELAHER B.P., STEINBERG P.D. & MILLAR A.J., 2008 Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline. *Journal of phycology* 44(4): 897-901.
- COLLINA-GIRARD J., 2003 La transgression finiglaciaire, l'archéologie et les textes (exemple de la grotte Cosquer et du mythe de l'Atlantide). *In: Human records of recent geological evolution in the Mediterranean basin historical and archeological evidence.* CIESM Workshop Monographs 24, Monaco, CIESM publ., pp. 63-70.
- CORMACI M. & FURNARI G., 1999 Changes of the benthic algal flora of the Tremiti Islands (Southern Adriatic) Italy. *Hydrobiologia* 398: 75-79.
- CORMACI M., FURNARI G., CATRA M.., ALONGI G. & GIACCONE G., 2012 Flora marina bentonica del Mediterraneo: Phaeophyceae. *Bolletin dell'accademia gioenia di scienze natural di Catania* 45: 1-508.
- COWEN R.K. & SPONAUGLE S., 2009 Larval dispersal and marine population connectivity. *Annual review of marine science* 1: 443-466.
- COWEN R.K., PARIS C.B. & SRINIVASAN A., 2006 Scaling of connectivity in marine populations. *Science* 311: 522-527.
- DAYTON P.K., 1985 Ecology of kelp communities. *Annual review of ecology and systematics* 16: 215-245.

- DE GROOT R., BRANDER L., VAN DER PLOEG S., COSTANZA R., BERNARD F., BRAAT L., CHRISTIE M., CROSSMAN N., GHERMANDI A., HEIN L., HUSSAIN S., KUMAR P., McVITTIE A., PORTELA R., RODRIGUEZ L.C., TEN BRINK P. & VAN BEUKERING P., 2012 Global estimates of the value of ecosystems and their services in monetary units. *Ecosystem services* 1: 50-61.
- DEVESCOVI M. & IVEŠA L., 2007 Short term impact of planktonic mucilage aggregates on macrobenthos along the Istrian rocky coast (Northern Adriatic, Croatia). *Marine Pollution bulletin* 54: 887-893.
- DÍEZ I., SANTOLARIA A. & GOROSTIAGA J.M., 2003 Relationships of environmental factors with the structure and distribution of subtidal seaweed vegetation of the western Basque coast (N. Spain). Estuarine and coastal shelf science 56: 1041-1054.
- DRAISMA'S. G., BALLESTEROS E., ROUSSEAU F. & THIBAUT T., 2010 DNA sequence data demonstrate the polyphyly of the genus *Cystoseira* and other Sargassaceae genera (Phaeophyceae). *Journal of phycology* 46(6): 1329-1345.
- EARL D.A. & VonHOLDT B.M., 2012 STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetics resources* 4 (2): 359-361.
- ENGEL C. R., DESTOMBE C. & VALERO M., 2004 Mating system and gene flow in the red seaweed *Gracilaria gracilis*: effect of haploid–diploid life history and intertidal rocky shore landscape on fine-scale genetic structure. *Heredity* 92(4): 289-298.
- ENGELEN A., OLSEN J., BREEMAN A. & STAM W., 2001 Genetic differentiation in *Sargassum polyceratium* (Fucales: Phaeophyceae) around the island of Curaçao (Netherlands Antilles). *Marine biology* 139 (2): 267-277.
- EPIARD-LAHAYE M., PELLEGRINI M. & WEISS H., 1987 Influence des rythmes émersionimmersion sur le développement des boutures de *Cystoseira stricta* Sauvageau (Phéophycées, Fucales) en culture. *Botanica marina* 30: 259-266.
- ESTES J.A., DANNER E.M., DOAK D.F., KONAR B., SPRINGER A.M., STEINBERG P.D., TINKER M.T. & WILLIAMS T.M., 2004 Complex trophic interactions in kelp forest ecosystems. *Bulletin of marine science* 74(3): 621-638.
- EVANNO G., REGNAUT S. & GOUDET J., 2005 Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular ecology* 14 (8): 2611-2620.
- FALACE A., ALONGI G., CORMACI M., FURNARI G., CURIEL D., CECERE E. & PETROCELLI A., 2010 Changes in the benthic algae along the Adriatic Sea in the last three decades. *Chemistry and ecology* 26 (S1): 77-90.
- FELDMANN J., 1937 Recherches sur la végétation marine de la Méditerranée. La Côte des Albères. Rouen, Imprimerie de Wolf, 339 p.
- FILBEE-DEXTER K. & SCHEIBLING R.E., 2014 Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. *Marine ecology progress series* 495: 1-25.
- FOSTER N.L., PARIS C.B. & KOOL J.T., 2012 Connectivity of Caribbean coral populations: complementary insights from empirical and modelled gene flow. *Molecular ecology* 21: 1143-1157.
- FOSTER M.S., & SCHIEL D.R., 1985 The ecology of giant kelp forests in California: a community profile. Washington, U.S. Fish and Wildlife Service publ., xv + 152 p.
- FRASCHETTI S., TERLIZZI A., GUARNIERI G., PIZZOLANTE F., D'AMBROSIO P., MAIORANO P., BEQIRAJ S. & BOERO F., 2011 Effects of unplanned development on marine biodiversity: a lesson from Albania (central Mediterranean Sea). *Journal of coastal research* 58: 106-115.
- FRAYSSE M., PAIRAUD I.L., ROSS O., FAURE V. & PINAZO C., 2014 Intrusion of Rhône River diluted water into the Bay of Marseille: generation processes and impacts on ecosystem functioning. *Journal of geophysical research* 119: 6535-6556.
- GALINDO H.M., OLSON D.B., & PALUMBI S.R., 2006 Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. *Current biology* 16 (16): 1622-1626.
- GAO H., WILLIAMSON S. & BUSTAMANTE C.D., 2007 A Markov chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multilocus genotype data. *Genetics* 176: 1635-1651.
- GEANGE S.W. & STIER A.C., 2009 Order of arrival affects competition in two reef fishes. *Ecology* 90 (10): 2868-2878.
- GIACCONE G., ALONGI G., PIZZUTO F. & COSSU A.V.L., 1994 La vegetazione marina bentonica fotofila del Mediterraneo: 2: Infralitorale e Circalitorale: proposte di aggiornamento. Bollettino dell'accademia gioenia di scienze naturali di Catania 27: 111-157.

- GIAKOUMI S., CEBRIAN E., KOKKORIS G.D., BALLESTEROS E. & SALA E., 2012 Relationships between fish, sea urchins and macroalgae: the structure of shallow rocky sublittoral communities in the Cyclades, Eastern Mediterranean. *Estuarine, coastal and shelf science* 109: 1-10.
- GOUDET J., 2001 FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3).
- GUIRY M.D. & GUIRY G.M., 2016 AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on June, 24<sup>th</sup> 2016.
- HALPERN B.S., WALBRIDGE S., SELKOE K.A., KAPPEL C.V., MICHELI F., D'AGROSA C., BRUNO J.F., CASEY K.S., EBERT C., FOX H.E., FUJITA R., HEINEMANN D., LENIHAN H.S., MADIN E.M.P., PERRY M.T., SELIG E.R., SPALDING M., STENECK R. & WATSON R., 2008 A global map of human impact on marine ecosystems. *Science* 319 (5865): 948-952.
- HARROLD C. & PEARSE J. S., 1987 The ecological role of echinoderms in kelp forests. *Echinoderm studies* 2: 137-233.
- HAWKINS S.J., MOORE P.J., BURROWS M.T., POLOCZANSKA E., MIESZKOWSKA N., HERBERT R.J., JENKINS S.R., THOMPSON R.C., GENNER M.J. & SOUTHWARD A.J., 2008 Complex interactions in a rapidly changing world: responses of rocky shore communities to recent climate change. *Climate research* 37: 123-133.

  HELMUTH B., MIESZKOWSKA N., MOORE P. & HAWKINS S.J., 2006 Living on the edge of
- HELMUTH B., MIESZKOWSKA N., MOORE P. & HAWKINS S.J., 2006 Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. *Annual review of ecology, evolution, and systematics* 37: 373-404.
- HELLBERG M.E., 2009 Gene flow and isolation among populations of marine animals. *Annual review of ecology, evolution, and systematics* 40: 291-310.
- HOEK van den C., MANN D.G. & JAHNS, H.M., 1995 Algae. An introduction to phycology. Cambridge, Cambridge University Press, 627 p.
- JACKSON J.B.C., 2008 Ecological extinction and evolution in the brave new ocean. *Proceedings of the national academy of sciences of the United States of America* 105 (1): 11458-11465.
- JENSEN J.L., BOHONAK A.J. & KELLEY S.T., 2005 Isolation by distance, web service. *BMC Genetics* 6 (13): 1-6.
- JONES C.G., LAWTON J.H. & SHACHAK M., 1994 Organisms as ecosystem engineers. *Oikos* 69: 373-386.
- KOMATSU T. & MURAKAMI S.I., 1994 Influence of a *Sargassum* forest on the spatial distribution of water flow. *Fisheries oceanography* 3 (4): 256-266.
- KOPELMAN N.M., MAYZEL J., JAKOBSSON M., ROSENBERG N.A. & MAYROSE I., 2015—Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. *Molecular ecology resources* 15: 1179-1191.
- inferences across K. *Molecular ecology resources* 15: 1179-1191.

  KUHLEMANN J., ROHLING E.J., KRUMREI I., KUBIK P., IVY-OCHS S. & KUCERA M., 2008

   Regional synthesis of Mediterranean athmospheric circulation during the Last Glacial Maximum. *Science* 321: 1338-1340.
- KRUEGER-HADFIELD S. A., ROZE D., MAUGER S. & VALERO M., 2013 Intergametophytic selfing and microgeographic genetic structure shape populations of the intertidal red seaweed *Chondrus crispus. Molecular ecology* 22(12): 3242-3260.
- LAMELA-SILVARREY C., FERNÁNDEZ C., ANADÓN R. & ARRONTES J., 2012 Fucoid assemblages on the north coast of Spain: past and present (1977–2007). *Botanica marina* 55 (3): 199-207.
- LAZURE P. & DUMAS F., 2008 An external-internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS3D). *Advances in water resources* 31: 233-250.
- LAWLER S.P. & MORIN P.J., 1993 Temporal overlap, competition, and priority effects in larval anurans. *Ecology* 74: 174-182.
- LEDOUX J.B., GARRABOU J., BIANCHIMANI O., DRAP P., FÉRAL J.P. & AURELLE D., 2010a

   Fine-scale genetic structure and inferences on population biology in the threatened Mediterranean red coral, *Corallium rubrum. Molecular ecology* 19 (19): 4204-4216.
- LEDOUX J.B., MOKHTAR-JAMAÏ K., ROBY C. & FÉRAL J.P., 2010b Genetic survey of shallow populations of the Mediterranean red coral [Corallium rubrum (Linnaeus, 1758)]: new insights into evolutionary processes shaping nuclear diversity and implications for conservation. Molecular ecology, 19, 675-690.
- LEJEUSNE C. & CHEVALDONNÉ P., 2006 Brooding crustaceans in a highly fragmented habitat: the genetic structure of Mediterranean marine cave-dwelling mysid populations. *Molecular ecology* 15 (13): 4123-4140.

- LETT C., VERLEY P., MULLON C., PARADA C., BROCHIER T., PENVEN P. & BLANKE B., 2008 - A Lagrangian tool for modelling ichthyoplankton dynamics. Environmental modeling & software 23: 1210-1214.
- LOUETTE G. & MEESTER L.D., 2007 Predation and priority effects in experimental zooplankton communities. Oikos 116: 419-426.
- LOWE W.S. & ALLENDORF F.W., 2010 What can genetics tell us about population connectivity. Molecular ecology 19: 3038-3051.
- MANGIALAJO L., CHIANTORE M., SUSINI M.L., MEINESZ A. & THIBAUT T., 2012 Zonation patterns and interspecific relationships of fucoids in microtidal environments. Journal of experimental marine biology and ecology 421: 72-80.
- MOKHTAR-JAMAÏ K., PASCUAL M., LEDOUX J.B., COMA R., FÉRAL J.P., GARRABOU J. & AURELLE D., 2011 — From global to local genetic structuring in the red gorgonian Paramuricea clavata: the interplay between oceanographic conditions and limited larval dispersal. Molecular ecology 20 (16): 3291-3305.
- MOLINIER R., 1960 Etude des biocénoses marines du Cap Corse. Vegetatio 9 (4-5): 217-312.
- MORHANGE C., 2003 Archaeological and biological records of relative sea-level changes in the Mediterranean during the Late Holocene. Two case studies of gradual evolution to instantaneous events, Marseilles (France) end Pozzuoli (Italy). In: Human records of recent geological evolution in the Mediterranean basin – historical and archeological evidence. CIESM Workshop monographs 24, Monaco, CIESM publ., pp. 77-83.
- MUNDA I.M., 1974 Changes and succession in the benthic algal associations of slightly polluted habitats. Revue internationale d'océanographie médicale 34: 37-52.
- MUNDA I.M., 1982 The effects of organic pollution on the distribution of fucoid algae from the Istrian coast (vicinity of Rovinj). Acta adriatica 23: 329-337.
- MUNDA I.M., 1993 Changes and degradation of seaweed stands in the Northern Adriatic. Hvdrobiologia 260/261: 239-253.
- MUTHS D., RASTORGUEFF P. A., SELVA M. & CHEVALDONNÉ P., 2015 Local scale connectivity in the cave-dwelling brooding fish Apogon imberbis. Journal of sea research 95: 70-74.
- NEIVA J., ASSIS J., FERNANDES F., PEARSON G.A., SERRÃO E.A., 2014 Species distribution models and mitochondrial DNA phylogeography suggest an extensive biogeographical shift in the high-intertidal seaweed Pelvetia canaliculata. Journal of biogeography, 41: 1137-1148.
- ORFANIDIS S., PANAYOTIDIS P. & STAMATIS N., 2001 Ecological evaluation of transitional and coastal waters: a marine benthic macrophytes-based model. Mediterranean marine science 2 (2): 45-66.
- ORFANIDIS S., PANAYOTIDIS P. & UGLAND K.I., 2011 Ecological Evaluation Index continuous formula (EEI-c) application: a step forward functional groups, the formula and reference condition values. Mediterranean marine science 12 (1): 199-231.
- PAIRAUD I.L., GATTI J., BENSOUSSAN N., VERNEY R. & GARREAU P., 2011 Hydrology and circulation in a coastal area off Marseille: validation of a nested 3D model with observations. Journal of marine systems 88 (1): 20-33
- PALUMBI S.R., 2003 Population genetics, demographic connectivity, and the design of marine reserves. Ecological applications 13 (sp1): 146-158.
- PENANT G., AURELLE D., FERAL, J. P. & CHENUIL A., 2013 Planktonic larvae do not ensure gene flow in the edible sea urchin Paracentrotus lividus. Marine ecology progress series 480: 155-170.
- PÉRÈS J.M., 1982 Zonations. In: Kinne O. (ed.), Marine Ecology, vol. 5, part 1. Chichester, John Wiley & sons Ltd publ., pp. 9-45.
- PETRENKO A., 2003 Variability of circulation features in the gulf of Lion NW Mediterranean Sea. Importance of inertial currents, *Oceanologica acta* 26: 323–338. PHILLIPS J.A. & BLACKSHAW J.K., 2011 — Extirpation of macroalgae (*Sargassum* spp.) on the
- subtropical east Australian coast. Conservation biology 25 (5): 913-921.
- PIGNATTI S., 1962 Associazioni di alghe marine sulla costa veneziana. Memorie del Reale Istituto Veneto di Scienze, Lettere ed Arti, Venezia, 134 p.
- PINAZO C., FRAYSSE M., DOGLIOLI A., FAURE V., PAIRAUD I.L., PETRENKO A., THOUVENIN B., TRONCZYNSKI J., VERNEY R. & YOHIA C., 2013 — Programme MASSILIA: Modélisation de la baie de Marseille: influence des apports anthropiques de la métropole sur l'écosystème marin. Rapport RST.ODE/LER/PAC/13-14, Paris, Ifremer, 136 p.
- PRADAL M.A. & MILLET B., 2006 Spatial heterogeneity of wind forcing: application to artificial reef functioning influenced by the circulation in the Bay of Marseilles, France, Comptes rendus biologies 329 (7): 541-550.

- PRADAL M.A. & MILLET B., 2013 Spatial heterogeneity of artificial reefs functioning according to wind-induced Lagrangian circulation. *ISRN Oceanography*, 2013 ID 568487: 1-9. dx.doi. org/10.5402/2013/568487.
- PRITCHARD J.K., STEPHENS M. & DONNELLY P., 2000 Inference of population structure using multilocus genotype data. *Genetics* 155 (2): 945-959.
- PROCACCINI G., RUGGIERO M.V. & ORSINI L., 2002 Genetic structure and distribution of microsatellite population genetic diversity in *Posidonia oceanica* in the Mediterranean basin. *Bulletin of marine science* 71 (3): 1291-1297.
- RAYBAUD V., BEAUGRAND G., GOBÈRVILLE E., DELEBECQ G., DESTOMBE C., VALERO M., DAVOULT D., MORIN P. & GEVAERT, F., 2013 Decline in kelp in west Europe and climate. *PloS One* 8 (6), e66044.
- RIBERA M.A., GOMEZ GARRETA A., GALLARDO T., CORMACI M., FURNARI G. & GIACCONE G., 1992 Check-list of Mediterranean seaweeds. I. Fucophyceae (Warming, 1884). *Botanica marina* 35 (2): 109-130.
- ROBVIEUX P., 2013 Conservation du genre Cystoseira en région PACA. Thèse de doctorat de l'Université de Nice-Sophia Antipolis, 326 p.
- ROBVIEUX P., VIDEMENT J., RIBOU C., FORCIOLI D., MEINESZ A., THIBAUT T. & BOTTIN L., 2012 First characterization of eight polymorphic microsatellites for *Cystoseira amentacea* var. *stricta* (Fucales, Sargassaceae). *Conservation genetics resources* 4: 923-925.
- ROUSSET F., 1997 Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. *Genetics* 145: 1219-1228.
- ROUSSET F., 2008 Genepop'007: a complete re-implementation of the genepop software for Windows and Linux. *Molecular ecology resources* 8: 103-106.
- SALA E., BALLESTEROS E., DENDRINOS P., DI FRANCO A., FERRETTI F., FOLEY D., FRASCHETTI S., FRIELANDER A., GARRABOU J., GÜÇLÜSOY H., GUIDETTI P., HALPERN B.S., HEREU B., KARAMANLIDIS, KIZILKAYA Z., MACPHERSON E., MANGIALAJO L., MARIANI S., MICHELI F., PAIS A., RISER K., ROSENBERG A.A., SALES M., SELKOE K.A., STARR R., TOMAS F. & ZABALA M., 2012 The structure of Mediterranean rocky reef ecosystems across environmental and human gradients, and conservation implications. *Plos ONE* 7 (2): e32742.
- SALA E. & KNOWLTON N., 2006 Global marine biodiversity trends. *Annual review of environment and resources* 31: 93-122.
- SALE P.F., VAN LAVIEREN H., ABLAN LAGMAN M.C., ATERNA J., BUTLER M., FAUVELOT C., HOGAN J.D., JONES G.P., LINDERMAN K.C., PARIS C.B., STENECK R. & STEWART H.L., 2010 Preserving reef connectivity: a handbook for Marine Protected Areas managers. Connectivity Working Group, Coral Reef Targeted Research and Capacity Building for Management Program. UNU-INWEH, Australia, 79 p.
- SAUVAGEAU C., 1912 A propos des *Cystoseira* de Banyuls et de Guéthary. *Bulletin de la station biologique d'Arcachon* 14: 1-424.
- SCHIEL D.R., 2011 Biogeographic patterns and long-term changes on New Zealand coastal reefs: non-trophic cascades from diffuse and local impacts. *Journal of experimental marine biology and ecology* 400 (1): 33-51.
- SCHIEL D.R. & FOSTER M.S., 2006 The population biology of large brown seaweeds: ecological consequences of multiphase life histories in dynamic coastal environments. *Annual review of ecology, evolution, and systematics* 37: 343-372.
- SERRA I.A., INNOCENTI A.M., DI MAIDA G., CALVO S., MIGLIACCIO M., ZAMBIANCHI E., PIZZIGALLI G., ARNAUD-HAOND S., DUARTE C.M., SERRÃO E. & PROCACCINI G., 2010 Genetic structure in the Mediterranean seagrass *Posidonia oceanica*: disentangling past vicariance events from contemporary patterns of gene flow. *Molecular ecology* 19 (3): 557-568.
- SOLTAN D., VERLAQUE M., BOUDOURESQUE C.F. & FRANCOUR P., 2001 Changes in macroalagal communities in the vicinity of a Mediterranean sewage outfall after the setting up of a treatment plant. *Marine pollution bulletin* 42: 59-71.
- STENECK R.S., GRAHAM M.H., BOURQUE B.J., CORBETT D., ERLANDSON J.M., ESTES J.A. & TEGNER M.J., 2002 Kelp forest ecosystems: biodiversity, stability, resilience and future. *Environmental conservation* 29 (4): 436-459.
- SUSINI M.L., 2006 *Statut et biologie de* Cystoseira amentacea *var*. stricta. PhD Thesis, Université Nice-Sophia Antipolis, Nice, 236 p.
- SUSINI M. L., MANGIALAJO L., THIBAUT T. & MEINESZ A., 2007 Development of a transplantation technique of *Cystoseira amentacea* var. *stricta* and *Cystoseira compressa*. *Hydrobiologia* 580 (1): 241-244.

- TATARENKOV A., JONSSON R.B., KAUTSKY L. & JOHANNESSON K., 2007 Genetic structure in populations of *Fucus vesiculosus* (Phaeophyceae) over spatial scales from 10 m to 800 km. *Journal of phycology* 43: 675-685.
- THIBAUT T., PINEDO S., TORRAS X. & BALLESTEROS E., 2005 Long-term decline of the populations of Fucales (*Cystoseira*, *Sargassum*) in the Albères coast (northwestern Mediterranean). *Marine pollution bulletin* 50: 1472-1489.
- THIBAUT T., BLANFUNÉ A., MARKOVIC L., VERLAQUE M., BOUDOURESQUE C.F., PERRET-BOUDOURESQUE M., MAĆIC V. & BOTTIN L., 2014 Unexpected abundance and long-term relative stability of the brown alga *Cystoseira amentacea*, hitherto regarded as a threatened species, in the north-western Mediterranean Sea. *Marine pollution bulletin* 89: 305-323.
- THIBAUT T., BLANFUNÉ A., BOUDOURESQUE C.F. & VERLAQUE M., 2015a Decline and local extinction of Fucales in the French Riviera: the harbinger of future extinctions? *Mediterranean marine science* 16 (1): 206-224.
- THIBAUT T., BLANFUNÉ A., VERLAQUE M., BOUDOURESQUE C.F. & RUITTON S., 2015b The *Sargassum* conundrum: highly rare, threatened or locally extinct in the NW Mediterranean and still lacking protection. *Hydrobiologia*. DOI 10.1007/s10750-015-2580-y
- THIBAUT T., BLANFUNÉ A., BOUDOURESQUE C.F., COTTALORDA J.M., HEREU B., SUSINI M.L. & VERLAQUE M., 2016 Unexpected temporal stability of *Cystoseira* and *Sargassum* forests in Port-Cros, one of the oldest Mediterranean marine National Parks. *Cryptogamie, Algologie* 37 (1): 61-90.
- VERLAQUE M., 1987 Contribution à l'étude du phytobenthos d'un écosystème photophile thermophile marin en Méditerranée occidentale. Etude structurale et dynamique du phytobenthos et analyses des relations Faune-Flore. PhD. Thesis, Université Aix-Marseille II, Marseille, 389 p.
- WAYCOTT M., DUARTE C.M., CARRUTHERS T.J., ORTH R.J., DENNISON W.C., OLYARNIK S., CALLADINE A., FOURQUREAN J.W., HECK Jr K.L., HUGUES A.R., KENDRICK G.A., KENWORTHY W.J., SHORT F.T. & WILLIAMS, S.L., 2009 Accelerating loss of seagrasses across the globe threatens coastal ecosystems. *Proceedings of the national academy of sciences of the United States of America* 106 (30): 12377-12381.
- WEIR B S. & CÓCKERHAM C.C., 1984 Estimating F-statistics for the analysis of population structure. *Evolution* 38 (6): 1358-1370.
- WERNBERG T., THOMSEN M.S., TUYA F., KENDRICK G.A., STAEHR P.A. & TOOHEY B.D., 2010 Decreasing resilience of kelp beds along a latitudinal temperature gradient: potential implications for a warmer future. *Ecology letters* 13 (6): 685-694.
- WERNBERG T., RUSSELL B. D., THOMSEN M. S., GURGEL C. F. D., BRADSHAW C. J., POLOCZANSKA E. S., CONNELL S. D., 2011 Seaweed communities in retreat from ocean warming. *Current biology*, 21 (21): 1828-1832.
- WFD, 2000 Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. *Official journal of the european communities*, 43 (L327): 1-73.
- WORM B., BARBIER E.B., BEAUMONT N., DUFFY J.E., FOLKE C., HALPERN B.S., JACKSON J.B.C., LOTZE H.K., MICHELI F., PALUMBI S.R., SALA E., SELKOE K.A., STACHOWICZ J.J. & WATSON R., 2006 Impacts of biodiversity loss on ocean ecosystem services. *Science* 314 (5800): 787-790.
- WORM B. & LOTZE H.K., 2006 Effects of eutrophication, grazing, and algal blooms on rocky shores. *Limnology and oceanography* 51 (1): 569-579.