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Abstract — Reproduction is one of the most important and expensive processes in the life
history of plants. The cost commonly incurred by reproductive investment in plants with
separate sexes may result in sexual dimorphism. Among bryophytes, sexual dimorphism has
been observed in some sex-expressing dioicous species and in some sex-expressing monoicous
species with a rhizautoicous sexual system. In the present study, we have investigated sexual
dimorphism in morphological features and relative reproductive investments in sporophytic
female, non-sporophytic female, sex-expressing male and non-expressing ramets in a
population of the rhizautoicous Fissidens flaccidus. Morphometric analyses confirmed sexual
dimorphism; gemmiform male ramets were smaller than the other ramet morphs, and
exhibited greater sexual investment. Sexual reproductive investment was approximately 35%
in males, 13% in non-sporophytic females and 25% in sporophytic females. Our results
indicate trade-offs between reproductive investment and vegetative growth for both sexes in
this species.

Sexual system / reproductive allocation / reproductive cost / rhizautoicy / trade-offs /
mosses / bryophytes

INTRODUCTION

Male and female individuals in many dioicous species may differ in
morphology, physiology and life history traits, such as sexual maturation and
mortality (Dawson & Geber, 1999; Holzapfel & Bradshaw, 2002). Although more
frequently seen among unisexual species, dissimilarity between the sexes has been
also observed in some cosexual species of bryophytes and angiosperms (Delph,
1999; Stark & Brinda, 2013). Among bryophytes, this is the case with some
rhizautoicous species, where small male shoots are connected to female shoots
through rhizoids (Wyatt, 1985; Maciel-Silva & Porto, 2014).

Sexual dimorphism in bryophytes is generally more subtle than in seed
plants. Not only is sexual dimorphism expressed exclusively in the gametophytic
phase (Glime & Bisang, 2017a), but sexual expression is also relatively rare
(= gametangia) in dioicous bryophytes, which makes sex-specific morphological
differences difficult to detect, with the exception of nanandrous (dwarf males)
species (Hedenids & Bisang, 2011; Pichonet & Gradstein, 2012). Sexual dimorphism
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can be expressed in morphological, physiological and life history traits and at various
ontogenetic stages. For example, male spores have been reported to be smaller in a
few species (anisospory) (Une, 1984; Hedderson & Zander, 2007; Glime & Bisang,
2017b), and may have lower germination rates (McLetchie, 1992), while male
gametophytes have shown lower water stress tolerance (Marks et al., 2016), or their
gametangia have been observed to mature earlier (Milne, 2001; Stark & Brinda,
2013). Conversely, sex-expressing females have distinctly greater biomass than
males in some species (Shaw & Gaughan, 1993; McLetchie & Puterbaugh, 2000;
Pohjamo & Laaka-Lindberg, 2004; McDaniel, 2005; Horsley et al., 2011), and
smaller in other species (Laaka-Lindberg, 2001; Rydgren & Okland, 2003; Hola
et al., 2014), while in some species, morphological sexual dimorphism is minimal
(Stark et al., 2001).

Life history theory predicts that the resources produced by a plant are
directed to three essentials functions: growth, defense and reproduction (Delph,
1999). The proportion of resources allocated to reproduction is defined as reproductive
investment or reproductive effort (Hirshfield & Tinkle, 1975; Karlsson & Méndez,
2005). In many cases, reproductive investment entails a cost because the reproductive
function competes with others functions. If such a cost differs between the sexes,
sexual dimorphism may result (Laaka-Lindberg, 2001; Obeso, 2002; Karlsson &
Méndez, 2005).

Reproductive cost has received little attention in monoicous bryophytes
with functionally separate sexes, such as rhizautoicous species. On the other hand,
there are indications of reproductive costs in dioicous species in terms of reduced
growth rates and clonal propagation as a result of prezygotic (Laaka-Lindberg, 2001;
Pereira et al., 2016) and postzygotic investment, i.e. sporophyte formation (Ehrlén
et al., 2000; Stark et al., 2000; Bisang & Ehrlén, 2002; Rydgren & Okland, 2002,
2003; Stark et al., 2009). Prezygotic investment has been reported to be higher in
males than in females (McLetchie & Puterbaugh, 2000; Horsley et al., 2011; Stark
& Brinda, 2013), lower in males than in females (Laaka-Lindberg, 2001; Pohjamo
& Laaka-Lindberg, 2004; Bisang et al., 2006), and equal between the sexes (Stark
et al., 2001). The formation of sporophytes usually consumes more resources than
the development of gametangia (Laaka-Lindberg, 2001; Hola et al., 2014).

In this study, we aimed to investigate the relationship between reproductive
investment and sexual dimorphism in sex-expressing individuals of a tropical
bryophyte species, the rhizautoicous Fissidens flaccidus Mitt. This species has been
described as monomorphic, with equal-sized female and male stems (Pursell, 2007).
However, preliminary statistical analyses indicated clear morphological differences
between the sexes. Here, we quantify sexual dimorphism in F. flaccidus and test if
this is associated with reproductive investment. We hypothesize that higher
reproductive investment is associated with reduced vegetative growth; i.e. the sexual
morph with higher allocation to sexual function has smaller sizes.

MATERIALS AND METHODS

Species studied, study site and sampling

Fissidens flaccidus is a monoicous acrocarpous moss with a rhizautoicous
sexual system, distributed in the Neotropical region, Africa, New Guinea and
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Australia (Pursell, 2007; Bordin & Yano, 2013). In Brazil, the species is found
in all phytogeographical domains (Amazon, Caatinga, Cerrado, Atlantic Forest,
Pampa and Wetland), where it grows on artificial substrates, rocks and, more
frequently, soils, at 40 to 1900 m a.s.l. (Pursell, 2007; Bordin & Yano, 2013; Bordin,
2015).

Forty 1-cm? samples were randomly collected from a large terricolous
population (approximately 2 m?) of Fissidens flaccidus at the end of the rainy season
on the campus of the Federal University of Pernambuco, in the city of Recife
(-8°.05°0518 S, -34°.94°86732 W). The weather in Recife is tropical, hot and
humid according to Kdppen’s classification, with an average monthly temperature
of 23°C (Alvares et al., 2013). The rainy season occurs in the autumn-winter period
(March-August), with June-July being the rainiest months (Coutinho et al., 1998).
The studied population of Fissidens flaccidus began to stabilize early in the rainy
season and withered during the dry season. Gemmae and spores were observed in
the studied population.

All ramets of each 1-cm? sample were examined (10 ramets in average).
After screening, we picked 100 ramets of the each one of the following sexual
morphs: sex-expressing male (producing perigonia), non-sporophytic female
(producing archegonia), sporophytic female (sporophyte in the phenophase “late
operculum intact”) (Greene, 1960) and non-expressing (i.e. unknown sex) ramets.
Thus, a total of 400 ramets were selected from the sample set of 40 cm?. The
sex of the ramets was identified under a dissection microscope based on the
presence of sexual structures. Ramets were washed to remove residual substrate
(soil) and had their rhizoids cut off and gemmae eliminated under a dissection
microscope.

Morphometric analysis

The individual ramets were placed on a slide with distilled water. The slides
with non-sporophytic females, sporophytic females and non-expressing ramets were
photographed using a Leica EZ4
stereomicroscope (3x magnifica-
tion), while sex-expressing male
ramets had to be photographed
with a Leica DM500 microscope
(10x magnification) because of
their smaller size.

All images were used for
making morphometric measure-
ments. The following parameters
were measured on each indivi-
dually photographed ramet using
Image] software (Abramoff et al.,
2012): length of the ramet, width
of the middle region of the ramet,
length and width of leaves in

the middle region of the ramet Fig. 1. Schematic drawing of sporophytic female ramets
(one ran_domly chosen leaf per showing the traits measured for morphometric analysis
ramet) (Fig. 1) and total number of  of Fissidens flaccidus. A. Ramet length, B. Ramet
leaves. width, C. Leaf length, D. Leaf width.
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Biomass and reproductive investment

After morphometric measurements, female and male ramets were analyzed
microscopically (40x magnification) for quantification of the number of antheridia
per perigonium and archegonia per perichaetia. The flat and simple structure of
ramets made it possible to count gametangia through non-destructive observation.
Next, we excised the reproductive structures (perigonia, perichaetia and sporophytes)
and stored them separately from the vegetative parts.

Vegetative and reproductive structures were oven-dried at 70°C for 72 h
until a constant weight (Bisang & Ehrlén, 2002), and deposited in a styrofoam box
with silica gel until weighing in a semi-microanalytical Metler Toledo scale
(maximum value 320g, resolution of 0.01 mg/0.1 mg).

Sex-expressing male ramets were too light to be weighed individually and
so biomass was estimated indirectly. For this, the number of leaves was the
morphometric variable chosen as indicative of weight increment because this variable
had the strongest correlation with weight in the other ramet categories (non-
sporophytic female, sporophytic female and non-expressing ramets), which were
weighed on individual basis. Thus, to estimate the weight of individual male ramets,
the weight of 100 male ramets was determined, including leaves and stems. This
value was then divided by the sum of the number of leaves of the entire set of male
ramets. Finally, the resulting value was used as a constant to estimate the biomass
of each individual ramet by multiplying it by the number of leaves. The same
indirect estimation of biomass was used for gametoecia, because of their small size.
The perichaetia of the 100 non-sporophytic females were weighed all together and
this value was divided by the total number of archegonia in the whole set; individual
biomass of each perichaetium was then obtained by multiplying this constant value
by the number of archegonia of each perichaetium. The same was done in the case
of sex-expressing males and sporophytic females. Sporophytes were weighted
separately.

Sexual reproductive investment was calculated for each individual ramet
according to the formula: Ri = Rb/(Rb + Vb), where Rb is the reproductive biomass,
Vb is the vegetative biomass and Ri the proportion of resources invested in
reproduction (McLetchie & Puterbaugh, 2000).

Statistical analysis

Sexual dimorphism. Measures of centrality and dispersion (mean, standard
deviation and Pearson coefficient of variation) were used to describe morphometric
variables and biomass. In order to investigate the presence of dimorphism, the
normality of data was first checked by the Shapiro-Wilk test. Since several traits
were not normally distributed, we used the Kruskal-Wallis test to compare
morphometric data and biomass between morphs. The Dunn’s test was used for
multiple comparisons and p-values were adjusted with Bonferroni correction.

Sexual dimorphism versus reproductive investment. In order to
investigate how reproductive investment relates to dimorphism, we used a Principal
Component Analysis (PCA). Since many morphometric variables were internally
correlated, ramet length was used to represent the morphometric variables for
comparisons of ramet vegetative biomass and reproductive investment. The scale of
variation of the data was standardized (Ranging). The Spearman’s correlation index
was used to investigate the statistical significance of the relationship between these
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variables. P-values were adjusted with Bonferroni correction. All analyses were
performed using Rstudio Team (2015) version 1.0.143 and the figures were prepared
with the R package GGPLOT (Wickham, 2009).

RESULTS

Sexual dimorphism

Sex-expressing male ramets were significantly smaller in all morphometric
aspects (Table 1; Fig. 2; ramet length H2 = 170.85, p < 0.0001; ramet width H2 =
165.93, p < 0.0001; leaf length H2 = 178.91, p < 0.0001; leaf width H2 = 182.23,
p < 0.0001; number of leaves H2 = 143.58, p < 0.0001) and had lower vegetative
biomass (H2 = 226.73, p < 0.0001) than the other morphs. Non-sporophytic and
sporophytic female ramets had more leaves than non-expressing ramets,
and sporophytic females also had longer leaves than non-expressing ramets. The
total biomass of sporophytic and non-sporophytic females was similar and
significantly greater than the biomass of sex-expressing males (H2 = 182.23,
p < 0.0001).

PCA - Biplot

Male
E] Non-sporophytic

female
IZI Sporophytic
female

PC2(14.1% explained var.)

PC1 (81.5% explained var.)

Fig. 2. Principal Component Analysis (PCA) of ramet length, reproductive investment, and vegetative
biomass of three different sexual morphs of Fissidens flaccidus. Legend: R.L, Ramet length (Axis 1 =
0.56; Axis 2 = —0.65); V.B, Vegetative biomass (Axis 1 = 0.61; Axis 2 = —0.07); R.I, Reproductive
investment (Axis 1 =—0.55; Axis 2 = —0.75). Variation explained by the first two axes: 95.6%.
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Table 2. Spearman’s Correlation coefficient and associated p-values between reproductive and
vegetative traits of three sexual morphs of Fissidens flaccidus. n.s. indicates non-significant
correlation

Sex-expressing male R? p-value
Reproductive investment vs. Ramet length -0.25 =1.0n
Reproductive investment vs. Vegetative biomass - 0.53 < 0.001
Non-sporophytic female R? p-value
Reproductive investment vs. Ramet length —-0.19 =1.0n
Reproductive investment vs. Vegetative biomass -0.62 < 0.001
Sporophytic female R? p-value

Reproductive investment vs. Ramet length -0.19 1.0
Reproductive investment vs. Vegetative biomass -0.72 < 0.001

Sexual dimorphism versus reproductive investment

Reproductive investment was significantly different between males, non-
sporophytic females and sporophytic females (H2 = 339.89, p < 0.0001) (Table 1).
Although sporophyte biomass was significantly higher than that of perigonia and
perichaetia (H2 = 310.66, p < 0.0001), the reproductive investment, i.e. the average
proportional allocation to sex structures was higher in males (35.15%) than
sporophytic females (25.40%) and non-sporophytic females (12.61%). The first two
PCA-axes explained 95.6% of the variance (Axis 1, 81.5%; Axis 2, 14.1%; Fig. 2).
The first PCA-axis was strongly positively correlated with vegetative biomass (0.61)
and ramet length (0.56). The second axis was strongly and negatively correlated
with reproductive investment (-0.75). The Spearman’s correlation test showed that
reproductive investment was negatively correlated with vegetative growth in all
ramet categories (Table 2).

DISCUSSION

The objective of this study was to quantify sexual dimorphism in Fissidens
flaccidus and test whether this is associated with reproductive investment. Sexual
dimorphism was confirmed for length and width of ramets, as well as for number,
length and width of leaves and total biomass. Interestingly, the reproductive biomass
did not differ between the sexes as long as no sporophytes were formed; in other
words, perichaetia mass did not differ from perigonia mass at the ramet level. This
finding implies that although absolute reproductive biomass is similar in both sexes,
the reproductive investment is higher in males because they produce similar biomass
despite being much smaller. Their limited size may be a result of earlier sexual
expression, with resources being channelled to reproduction to the detriment of
vegetative growth.

Many theories have sought to explain the possible causes of sexual
dimorphism, and all involve reproduction as the determining factor (Price, 1984).
Darwin (1877) and Lewin (1988) suggested that female organisms needed to reach
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greater sizes to initiate sexual expression because their function of producing and
maturing offspring, which often involves a large number of descendants, is very
costly. In this case, females must be larger at onset of sex expression to cope with
the high future reproductive cost. In turn, Delph (1999) and Obeso (2002) suggest
that reproductive cost leads to sexual dimorphism by causing the most expensive sex
to grow less and become relatively smaller. In the present study, male ramets of
F. flaccidus invested proportionally more in reproduction than non-sporophytic and
sporophytic females. To cope with the metabolic cost of forming perigonia, it has
been suggested that maturation of gametes takes longer in male bryophytes (Lackner,
1939; Stark & Brinda, 2013), which we presume may have happened in F. flaccidus.
The early onset of sex investment may have competed with vegetative development,
leading males to become gemmiform.

Sexual dimorphism is common among some rhizautoicous species of
Fissidens, including three species that occur in Brazil, namely, Fissidens curvatus
Hornsch., F scalaris Mitt., and F. taylorii Miill. Hal. In these species, male ramets
are gemmiform and distinctly smaller than sporophytic females, which in turn are
smaller than non-expressing ramets (Pursell, 2007; Bordin & Yano, 2013). In
comparison with these species, sexual dimorphism in F. flaccidus is less pronounced.

The morphometric and biomass similarity between female and non-
expressing ramets may indicate that the latter are less likely to be males, because
males are consistently smaller in the population. A higher proportion of females
among sex-expressing ramets seems to be common in rhizautoicous mosses such as
Tortula muralis Hedw. and Atrichum undulatum (Hedw.) P. Beauv., as reported by
Longton & Miles (1982), and Weissia controversa Nees & Hornsch. (Anderson &
Lemmon, 1972). An exception is Aloina bifrons (Stark & Brinda, 2013). The
sampling in the present work was not designed for determining the sex ratio of
F. flaccidus and, thus, this characteristic still needs to be investigated.

A higher proportional investment to formation of gametangia in males than
in non-sporophytic females also has been reported by Stark & Brinda (2013) in the
rhizautoicous Aloina bifrons (De Notaris) Delgadillo, although sporophytic ramets
were not observed and reproductive investment was estimated at the population
level only. Among the reproductive systems of bryophytes, the pseudautoicous
system follows a similar trend of high sexual investment in the male function. Male
plants of pseudautoicous species that grow on female ramets are dwarf and apparently
have the main function of producing antheridia (Pichonet & Gradstein, 2012; Glime
& Bisang, 2017b). While the mechanisms ruling the facultative reduction of males
has yet to be investigated, higher reproductive investment of male ramets has been
previously reported (Pursell, 2007; Stark & Brinda, 2013), and was suggested to
imply higher reproductive success (Stark & Delgadillo, 2001).

The association between high reproductive investment, i.e. proportional
allocation of resources to sex organs (Bisang et al., 2006) and lower vegetative
performance seems straightforward. Plants that invest proportionally more and
earlier in reproduction may have little energy left over for growth (Laaka-Lindberg,
2001; Horsley et al., 2011). Smaller size may result in relatively lower vigour and
defense in the face of inclement weather or other harsh environmental conditions.
For example, male populations of the dioicous liverwort Marchantia inflexa Nees &
Mont. that reproduce better asexually have lower success under stressful conditions
(McLetchie & Puterbaugh, 2000; Marks et al., 2016). Larger females of the moss
Entodon cladorrhizans (Hedw.) Miill. Hal. were observed to produce larger
sporophytes, but the development of sporophytes resulted in decreased vegetative
growth (Stark & Stephenson, 1983).
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In the present study, reproductive investment was higher in sex-expressing
males, followed by sporophytic females, and non-sporophytic females, and the
accumulation of vegetative biomass decreased in this same order. This finding may
indicate that these functions, growth and reproduction, compete for resources.
Competition for resources, or trade-offs, among tropical mosses has been poorly
investigated until present, but a trade-off between sexual (archegonia and antheridia)
and asexual (gemmae) structures has been reported in species of Calymperes (Pereira
et. al., 2016). In order to confirm the presence of trade-offs in F. flaccidus, however,
temporal studies, and preferably the inclusion of different genets and environmental
gradients, are necessary (Horsley et al., 2011; Brzyski et al., 2014).

In the present study, we have confirmed that sex-expressing females and
male ramets of F flaccidus are dimorphic in many morphometric parameters, and
although absolute prezygotically invested biomass does not differ among the sexes,
the reproductive investment, i.e. the proportional biomass invested in sexual
structures, was greater in male ramets, and this likely led them to grow less, thus
indicating a trade-off between reproduction and vegetative growth.
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