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INTRODUCTION

ABSTRACT

In this study, we suggest a method adapted to the retrodeformation of asymmetrical objects — such as
limb bones — by quantitatively estimating the effectiveness of the 7hin-Plate Splines (TPS) interpola-
tion function as a retrodeformation tool. To do so, taphonomic deformations were first simulated on
a single horse femur. The original bone was then used as a reference in order to drive the retrodefor-
mation using anatomical landmarks. This approach, based on a single bone, enabled us to evaluate
the performance of the retrodeformation procedure. Then, the same approach was performed on a
sample of rhino femora but using a different specimen (from the same species) as the reference in
order to account for morphological variation. We also added sliding semi-landmarks on anatomical
curves. Finally, recrodeformation was applied on a sample of sauropodomorph dinosaur femora by
building a mean shape based on several well-preserved fossil specimens. Results show that entirely
flattened and stretched bones are more efficiently retrodeformed than bent and twisted bones. Intro-
duction of morphological variation increased the efficiency of retrodeformation for bent and locally
stretched bones. The application to the sample of fossils produced similar results but also highlighted
the difficulty of retrodeforming bones with a combination of different deformations. TPS interpola-
tion is an eficient tool of retrodeformation for asymmetrical objects, especially for bones with only
one affine deformation such as flattening or stretching. Finding a threshold of landmark number to
use for this process would be the next step because it would allow us to ensure the quality of retro-
deformation while keeping available a reasonable number of landmarks in order to perform shape
analysis on retrodeformed bones. Twisted and bent fossils are frequently discovered and we suggest
that these kinds of deformations should be studied with caution, especially when combined with
other types of taphonomic distortions.

RESUME

Le potentiel et les limites de la rétrodéformation d'objets asymétriques par Thin-Plate Spline : simulation
de déformations taphonomiques et application sur un échantillon d'os longs fossiles.

Dans cette étude, nous proposons une méthode de rétrodéformation adaptées aux objets asymé-
triques, comme les os des membres, en estimant I'efficacité de la fonction d’interpolation 7hin-Plate
Splines (TPS) comme outil de rétrodéformation. Des déformations taphonomiques sont simulées sur
un seul et méme fémur de cheval pour évaluer les performances de la procédure de rétrodéformation.
Los original est ensuite utilisé comme référence pour contrdler la rétrodéformation par 'intermédiaire
de landmarks anatomiques. Cette approche basée sur un os unique permet d’évaluer les performances
de la procédure de rétrodéformation. La méme approche est ensuite appliquée sur deux fémurs de
rthinocéros (de la méme espece) pour prendre en compte la variation morphologique. Des sliding
semi-landmarks sur courbes anatomiques sont également utilisés. La rétrodéformation est finalement
appliquée & un échantillon de fémurs de dinosaures sauropodomorphes en créant une forme moyenne
basée sur différents spécimens fossiles en bon état de préservation. Les résultats démontrent que les
os enti¢rement aplatis ou étirés sont plus efficacement rétrodéformés que les os courbés et tordus.
Lintroduction de variation morphologique a pour effet d’augmenter l'eflicacité de la rétrodéformation
pour les os courbés et avec un étirement localisé. Lapplication sur I'échantillon de fossiles donne des
résultats similaires mais souligne également le fait que les combinaisons de différentes déformations
sont moins efficacement rétrodéformées. Linterpolation par TPS est un outil de rétrodéformation
efficace pour les objets asymétriques, tout particuliérement pour les os qui ne présentent qu'une
seule déformation affine comme un écrasement ou un étirement. Il serait utile d’établir un nombre
limite de landmarks pour assurer I'efficacité de la rétrodéformation tout en conservant une partie de
Iéchantillon de landmarks pour des études morphométriques sur les os rétrodéformés. Les fossiles
sont souvent découverts courbés et tordus et nous suggérons que ces types de déformations soient
plus profondément étudiés, surtout lorsqu'ils sont combinés avec d’autres types de déformations.

taphonomic degradations, plastic deformations — which refer
to permanent and non-destructive degradations (Lee 1969;

Fossils generally undergo taphonomic processes before their
discovery (Efremov 1940). Although these phenomena are
informative regarding e.g. paleoecology, paleoenvironment, and
geology (Brett & Baird 1986), the original biological informa-
tion of the damaged fossil is altered (Webster & Hughes 1999;
Hedrick & Dodson 2013; Hedrick ez 2/ 2018). Of all these
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Lubarda & Lee 1981) — caused by geological phenomena are
among the most frequently observed degradations. In this con-
text, a wide variety of approaches aims to estimate the original
shape of an altered fossil. Because the main goal is to apply
the opposite taphonomic deformations on the deformed fos-
sils, these approaches are termed “retrodeformation” processes.
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The potential and limits of 7hin-Plate Spline retrodeformation on asymmetrical objects 4

Many retrodeformation methods consist of manually
deforming a specimen in three dimensions (3D) by using a
reference criterion. In fact, the popularization of 3D defor-
mation techniques in multiple scientific areas (Sedeberg &
Parry 1986; Zheng et al. 2017) can easily manipulate 3D
models with the help of computers. However, manually
deforming an object can induce a high degree of interpreta-
tion due to the high amount of uncertainty (Cunningham
et al. 2014; Lautenschlager 2016). Using reference criteria,
such as the bilateral symmetry of a skull, a conservative pat-
tern along vertebrae or the known circular shape of an orbit
(Arbour & Currie 2012; Cuff & Rayfield 2015; Vidal &
Diez Diaz 2017; Cirilli ez /. 2020; Diez Diaz et al. 2020),
can however provide satisfying results. It is also possible to
use a quantitative criterion in order to justify how to perform
retrodeformation.

The first report of the quantification of tectonic deforma-
tions among rocks and fossils was published by Haughton
in 1856. Harker published a similar study in 1885 to meas-
ure the effect of slaty cleavage on the deformation of fossils.
Later, the first application of a quantified retrodeformation
— inspired by the study of Harker (1885) — was published by
Lake (1943) and relied on the manipulation of photographs.
A rectangle was drawn around a picture of a distorted fossil.
Then, light was projected through this picture according to
an angle fitting the calculated amount of distortion. Finally,
a new picture of the resulting projection was taken with a
camera tilted at the opposite angle in order to remove any
perspective effect. The operator knew that perspective effect
was removed when the rectangle retrieved its original propor-
tions. This approach allows us to both retrodeform an object
using a quantified criterion (tectonic deformation) and to
control the whole process with another criterion (propor-
tions of the rectangle). Later, a wide variety of approaches
reported how to study distorted fossils in two dimensions
(2D) (Wellman 1962; Cooper 1990; Hughes & Jell 1992;
Motani 1997) but the increasing use of 3D deformation
techniques led researchers to investigate retrodeformation
with a different scope.

3D deformation techniques allow us to perform an algo-
rithmically driven retrodeformation on the whole geometry
of an object. As in 2D, using anatomical criterion allows us to
optimize the retrodeformation process. Such criteria — such
as the shape of an object or the position of a structure of
interest — allow us to ensure the quality of a retrodeformation
process for a biological object. Forms of both extant and fossil
organisms can be quantitatively studied using morphometric
analyses. Because traditional morphometrics — i.e., linear
distances, ratios and angles — can limit biological interpreta-
tions, because it does not capture the whole geometry of an
object (Adams ¢z al. 2013), geometric morphometrics (GM)
was developed at the end of the 20th century. GM methods
rely on the definition of landmark coordinates indicating
the location of anatomical features.

Thus, landmarks can be used as anatomical criteria in
order to justify the way retrodeformation is performed
(Zollikofer 2002; Zollikofer ez al. 2005; Lawing & Polly 2009;
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Molnar ez al. 2012; Tschopp e# al. 2013; Cunningham
etal. 2014). Thin-Plate Spline (TPS) is an interpolation function
widely used in computational graphics (Bookstein 1991).
TPS (Bookstein 1991; Gunz et al. 2009; Mitteroecker &
Gunz 2009) can be used to non-rigidly warp a target 3D
landmark configuration or a 3D surface (Bookstein 1991; Gunz
etal. 2009) according to a reference landmark configuration.
Hence, TPS is used as a retrodeformation tool in order to
restore the bilateral symmetry of palacontological objects in
different approaches which are: “Reflecting & Relabelling”
(Angielczyk & Sheets 2007; Gunz ez al. 2009) and “Non-
Linear Symmetrisation”, based respectively on bilateral
landmarks (Ghosh ez a/. 2010; Tallman ez al. 2014) or sliding
semi-landmarks, which can be placed along curves and
surfaces (Gunz & Mitteroecker 2013; Schlager ez al. 2018).
“Reflecting & Relabelling” is adapted for symmetrical objects
that were deformed by a uniform shearing (Angielczyk &
Sheets 2007; Gunz ez al. 2009). “Non-Linear Symmetrisation”
brings additional steps to the latter method in order to
retrodeform symmetrical objects with bending (flexure) and
compression (Ghosh ez a/. 2010; Tallman et al. 2014). These
two methods rely on the use of anatomical landmarks only.
However, anatomical landmarks can sometimes be difficult to
locate on paleontological objects because of preservation issues.
It was thus suggested to add sliding semi-landmarks (Schlager
et al. 2018) in order to include in the retrodeformation
procedure the distortion of asymmetry in anatomical regions
lacking recognizable anatomical landmarks.

Nonetheless, these methods are only adapted to restore the
bilateral symmetry of a 3D object (e.g. skulls, vertebrae) and
are not currently optimized for asymmetrical objects (Hedrick
et al. 2018). The solution usually suggested to restore the
morphology of asymmetrical objects such as limb bones
is to mirror the left or right element that is best preserved
(Lautenschlager 2016). But, in many specimens, either the
two sides are altered or one is missing. In such cases, and
despite the need for estimating the original morphology of
limb bones for functional analyses or museological purposes,
no solution has been proposed to our knowledge.

Herein, we aim to estimate the potential and limits of the
TPS function as a retrodeformation tool for asymmetrical
objects using anatomical landmarks. The retrodeformation
process consists of constraining a landmark configuration
by a reference one. The surfaces located between anatomical
landmarks are interpolated by following the landmark displace-
ment. In order to do so, we applied different deformations on
asingle specimen to create a sample of limb bones with known
deformations. We then performed TPS retrodeformation on
this sample in order to estimate its efficiency for each type of
deformation. This first part of the study sheds light on the
power and limits of this method depending on the deforma-
tion type and intensity. The same method was then applied
to a sample of different but morphologically close specimens
in order to assess the effect of morphological variation on the
TPS retrodeformation efficiency. Finally, an application was
performed on a sample of fossilized prosauropod femora in
order to test its reliability under real conditions.
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TaBLE 1. — List of the prosauropod femora used in this study. Left and right femora from SMNS 53537, SMNS 91296 (F10) and SMNS 91300 (F27) were most
likely from the same individual respectively. *, specimens chosen for reference.

Taxon

Collection number

Side Taphonomic deformations

Plateosaurus sp.

Plateosaurus gracilis
Efraasia minor

Plateosauridae indet.

SMNS 91300 (F27)*

SMNS13200a+e*
SMNS 91297 (F14)*
SMNS 91310 (F65)*
GPITRE7288*
SMNS 81914 (F8)
SMNS 91296 (F10)
SMNS 91300 (F27)
SMNS 91310 (F65)
GPIT uncatalogued
SMNS6017
SMNS53537
SMNS 91296 (F10)
SMNS 91306 (F48)
SMNS13200
SMNS53537
GPITRE7288
SMNS5715
SMNS12354c
SMNS57539
SMNS12220

rrrrrxIxxI3»rrIrrrroorrro o

Medium twisting

High flattening on distal epiphysis

High flattening on proximal epiphysis

Stretching of diaphysis, medium twisting of distal epiphysis
Bending of proximal epiphysis

Bending of proximal epiphysis

Medium twisting, stretching of distal epiphysis

Global medium flattening

Medium twisting, flattening of distal epiphysis

Low twisting, stretching of distal epiphysis

Bending of distal diaphysis, stretching of distal epiphysis
Low twisting

Global high flattening, bending of distal epiphysis

Global high flattening

Global medium flattening, bending of diaphysis, low twisting of distal epiphysis
Global medium flattening, bending of distal epiphysis

MATERIAL

In the first part of this study, we used a left femur of the
extant Equus caballus with no pathological deformation as a
single reference for virtual simulations of taphonomic degra-
dations. The unnumbered femur comes from the collections
of the Ecole Nationale Vétérinaire de Nantes (France). It was
digitized in 3D using the Artec Eva surface scanner. The 3D
reconstruction was performed using the Artec Studio Profes-
sional software (Artec 3D, v12.1.1.12).

In the second part of this study, we used two left femora of
extant white rhinoceros with no pathological deformation. A
left femur of Ceratotherium simum Burchell, 1817 (RMCA-
RG35146) was used to perform virtual simulations of tapho-
nomic deformations. A left femur of Ceratotherium simum
(BICPC-NH.CON.37) was used as a reference to perform
retrodeformations. For the scanning and 3D reconstruction,
we followed the same protocol as for the horse femur.

In the third part of this study, the application to fossil bones,
we used thirty-three femora of morphologically close basal
sauropodomorph dinosaurs from the Triassic (Table 1; von
Huene 1908; Moser 2003; Yates 2003; Lefebvre ez 2/ 2020).
All the bones were digitized using the same protocol mentioned
above except left and right femora of specimen GPITRE7288,
which were acquired by microtomography at the Institute for
Geosciences of Tiibingen, formerly known as Geologisch-
Paldontologisches Institut Tiibingen by H. Mallison (2010).
Twelve femora were removed from the sample because they
were affected by extreme types of deformation that were
identified as the most problematic ones in the first part of
our study. Five femora were identified as the best preserved
ones because they are not affected by obvious taphonomic
distortion. They were thus chosen as reference models for the
retrodeformation step. The sixteen remaining femora were
retained for applying retrodeformation (Table 1).
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ABBREVIATIONS

Institutions

BCIPC Powell Cotton Museum of Birchington-on-Sea,
Birchington-on-Sea;

GPIT Geologisch-Paldontologisches Institut Tiibingen,
Tiibingen;

RMCA Musée Royal de ’Afrique Centrale, Tervuren;

SMNS Staatliches Museum fiir Naturkunde Stuttgart, Stuttgart.

Other abbreviations

GM Geometric morphometrics;

TPS Thin-Plate Spline.

METHODS

SIMULATION OF TAPHONOMIC DEGRADATIONS
ON HORSE AND RHINO FEMORA
Choice of taphonomic deformation parameters
The first step in simulating taphonomic deformations on the
two horse and rhino femora was to settle the taphonomic
deformation’s parameters. Frequently observed taphonomic
deformations can be classified into types. We only considered
unique deformations that do not result from a combination
of different mechanical forces in order to limit the number
of parameters. Data from the literature and the observation
of fossil materials allowed us to define three main types of
deformations: 1) flattening and stretching (Briggs & Wil-
liams 1981; Arbour & Currie 2012; Baert ez al. 2014), 2) bend-
ing (Wahl 2009; Cuff & Rayfield 2015; Fanti ez a/. 2015) and
3) twisting (Colbert & Baird 1958; Nicholls & Russell 1985).
Flattening and stretching are affine deformations that affect
only distance parameters among bones, whereas bending and
twisting also alter angles and are thus categorized as non-affine
deformations (Zheng ez al. 2017).

Flattening and stretching refer, respectively, to the contraction
or the distension of the 3D surface along the antero-posterior,

COMPTES RENDUS PALEVOL - 2022 - 21 (9)



The potential and limits of 7hin-Plate Spline retrodeformation on asymmetrical objects 4

Fic. 1. — The different types of simulated deformations applied on the proximal epiphysis of the horse femur in lateral view. The bone at the centre is the original
one. Arrows represent the increase of intensity of deformation from low, medium to high: A, bending; B, twisting; C, flattening; D, stretching.

the medio-lateral and the proximo-distal axis of the femur
(Fig. 1C, D). This type of deformation is caused by the
weight of sediment accumulation (Briggs & Williams 1981;
Webster & Hughes 1999; Miiller ez al. 2018), tectonic processes
(Hughes & Jell 1992) and trampling by other animals (Fanti
eral. 2015). Bending refers to the folding of the surface along
the antero-posterior or the medio-lateral axis of the femur
(Fig. 1A). This type of deformation is caused by tectonic
constraints that alter several layers of sediments during and/
or after diagenesis (Wahl 2009; Fanti ez /. 2015; Miiller
et al. 2018). Twisting refers to the rotation of the bone
surface around its proximo-distal axis (Fig. 1B). This type
of deformation is frequently observed but results from the
occurrence of one of the deformations presented above on an
object that already displays a natural twist. This suggests that
post-mortem deformations such as compression can intensify
the degree of this biological feature (Nicholls & Russell 1985).
However, this type of deformation can also result from the
combination of two forces applied in opposite directions
(Thorson & Guthrie 1984).

We defined three different degrees of intensity for each
type of deformation: low, medium and high (Fig. 1; Table 2).
Intensities were defined based on the observation of fossil
bones and on how much 3D meshes could be deformed
without causing surface interpenetrations. These three degrees
refer to the increasing effect of geological deformation on

COMPTES RENDUS PALEVOL - 2022 - 21 (9)

fossils. While the low intensity refers to fossils for which a
retrodeformation step would not appear necessary, medium
intensity indicates a visible effect of taphonomic processes.
High intensity represents extreme situations where a retro-
deformation step appears essential.

Then, different anatomical locations were defined in order
to locally or globally apply each type of deformation. These
locations were the proximal and distal epiphyses, the diaphysis,
and the entirety of the bone. All of these deformations can be
applied positively or negatively along each axis. Consequently,
flattening and stretching are the same type of deformation
applied in an opposite direction. Only medium and high
intensities were applied to the epiphysis and the entirety of
the two rhino femora. In total, one hundred and thirty-two
3D models were created based on the horse femur and fifty-
two models were created for the two rhino femora (Table 2).

Application of the deformations

We applied deformations to the original 3D object using the
Blender software (The Blender Foundation, v. 2.79) in order to
simulate taphonomy. The 3D femur — from horse and rhino
— was placed within a deformation grid (Joshi ez /. 2007) to
ensure the repeatability of the anatomical selection for each
simulation. Boundaries between both epiphyses and the
diaphysis were defined according to the most distal point of the
third trochanter and the most proximal point of the condylar
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TaBLE 2. — The different parameters of deformation. Axis: X, medio-lateral,
Y, antero-posterior; Z, proximo-distal.

Types Bending
5;15;25° 10;45;90°
Epiphysis and diaphysis

Twisting  Stretching Flattening
10;30; 50%

Epiphysis, diaphysis
and entirety

Intensity
Localisations

Axis XY Z X;Y; Z

Directions +/- + -
Number (horse) 36 24 36 36
Number (rhinos) 8 8 18 18

crests. Thus, all parameters for all types of deformations were
applied to a same anatomical location using the deformation
grid (Fig. 1). Thirty-eight anatomical landmarks were defined
and located on the horse femur following Hanot ez /. (2017)
using the Landmark software (Wiley ez a/. 2005, v. 3.0.0.6).
27 anatomical landmarks and 612 sliding semi-landmarks on
curves (70 curves) were located on rhino femora following
Mallet ez al. (2019). The retrodeformation step was then
performed through a TPS deformation using the function
“tps3d” of the package Morpho (Schlager 2017) in R (R Core
Team, v. 3.4.3). During this process, the deformed specimen’s
conformation was warped onto a reference conformation —
the original horse femur and a rhino femur from the same
species — using anatomical landmarks as fixed points. The
displacement of anatomical landmarks drove the interpolation
of the bone surfaces located between these landmarks. This
surface interpolation was the morphological estimation used
as retrodeformation. The deformation between the deformed
femur and the reference was optimized in order to minimize
the “bending energy” (Bookstein 1991; Mitteroecker &
Gunz 2009).

Comparisons between retrodeformed and original bones
Consistencies and dissimilarities between undeformed and
retrodeformed femora were quantified using the “meshDist”
function of the package Morpho (Schlager 2017). This func-
tion measures the distances between each closest vertex of
two different meshes. Then, the interval between the first
and the third quartiles of these measures were selected as one
representative measurement for each retrodeformed femur.
Finally, results were graphically displayed using a combination
of boxplots and density graphs with the types of deformation
along the abscissa and their corresponding measurements along
the ordinate using the package ggplot2 (Wickham 2009). The
smaller the distance, the more efficient the retrodeformation
is deemed to be.

Then, differences between interpolated surfaces of unde-
formed and retrodeformed femora — the original horse femur
and another rhino femur from the same species — were graphi-
cally represented with heatmaps using the “meshDist” function
(Schlager 2017). A threshold was defined in order to clearly
delimit a difference between consistent and inconsistent sur-
faces. This threshold was defined using the smallest interval
measured, which is 1.95 mm for the horse femur and 3 mm for
rhino femora. Measures inferior to this value were referenced
as neutral. When measures are superior to this threshold, the
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3D surface is either in expansion or in compaction relative
to the original bone. Although results for the horse femur
provided information about the retrodeformation efficiency
itself, results for the rhino femora added information about
the effect of intraspecific morphological variation on the
retrodeformation.

APPLICATION TO A FOSSIL SAMPLE

Because the sample was composed of left and right femora, all
left femora were mirrored with Blender (The Blender Founda-
tion, v. 2.79) using “mirror” and “flip directions” functions.
20 landmarks were defined and located with the Landmark
software (Wiley er /. 2005, v. 3.0.0.6). Contrarily to previ-
ous cases, no reference was available for the retrodeformation
step. Therefore, the five best preserved femora were selected
in order to serve as a reference. A mean shape of these five
femora was computed with a Generalized Procrustes Analysis
(Rohlf & Slice 1990) using the functions “procSym” and its
value “mshape” from the package Morpho (Schlager 2017). A
few landmarks were missing on eight femora because of tapho-
nomic destructions: SMNS 81914 (F8); SMNS 91297 (F14);
SMNS 91300 (F27); Left SMNS 91310 (F65); SMNS 5715;
SMNS 12354c; SMNS 6017; Right SMNS 53537. These
missing landmark coordinates were interpolated with those
of the reference shape by using TPS with the function “fix-
LMtps” of the package Morpho (Schlager 2017). Finally, the
retrodeformation step was performed similarly as above by
interpolating the shape of the 16 femora of the sample with
the reference configuration, as in the third step of the “Target
Deformation Protocol” by Cirilli ez /. (2020). Heatmaps
were not used for this chapter because deformed specimens
were not created based on the same original one like it was
the case for horse and rhino bones. The function “rotmesh.
onto” of the package Morpho (Schlager 2017) was used to
perform a Procrustes fit between the original bone and the
retrodeformed one. Then, the function “deformGrid3d”
of the package Morpho (Schlager 2017) was used to show
the retrodeformation effectiveness by visualizing differences
between the original and the retrodeformed bones.

RESULTS

SIMULATION OF TAPHONOMIC

DEGRADATIONS ON HORSE FEMORA

The smallest distance measured between undeformed and
retrodeformed femur is 0.54 mm (0.1% of maximal height)
whereas the greatest is 5.67 mm (1.2% of maximal height)
(Fig. 2). Distances are lower for stretched, flattened and
bent bones than for twisted ones (Fig. 2). Ranges (difference
between minimum and maximum distances within each
deformation type) are lower for stretched, flattened and
bent bones than for twisted bones (Fig. 2). This means that
measures of distances are more spread for twisted bones than
for the other categories. The range increases from stretched
to flattened to bent bones (Fig. 2). The median is centred for
stretched, flattened and bent bones but is offset from the third
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Fic. 2. — Measured distances for retrodeformed horse femora. The distances between the surfaces of the undeformed femur and the retrodeformed femora (or-
dinate) were sorted by types of deformations (abscissa). Dots represent each measurement and their variation along the abscissa was randomized for visibility.
Boxplot and density curves allow us to visualize the distribution within each type of deformation.

quartile for twisted bones (Fig. 2). This means that there are
more numerous high distances measured for twisted bones
than for the other categories. The curve of density shows that
most of the distances measured between undeformed and
retrodeformed femora are concentrated below the median
within each category of deformations, especially for stretched,
flactened and bent bones (Fig. 2). It also shows that distances
higher than the median are more spread than the lower
distances (Fig. 2). This is also the case for twisted bones but
at a higher scale (Fig. 2). This means that low distances are
similar, which is not the case for high distances.

Based on these results, it is possible to rank these differ-
ent types of deformation from the most to the least efficient
retrodeformations: 1) stretching; 2) flattening; 3) bending;
and 4) twisting.

Distances vary mostly in accordance with both intensities
and deformation types (Appendix 1). In fact, the best retro-
deformed bones within each category are from low intensities.
Distances for medium intensities are higher than those of low
intensities except for flattened and stretched bones where
they are comparable. Highest distances are always observed
for high intensities.

Least eflicient retrodeformations for each type of deformation
are selected according to previous results in order to produce
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heatmaps (Fig. 3). No recurring inconsistencies of surfaces
were identified on retrodeformed flattened and stretched horse
femora. However, retrodeformations of bent and twisted bones
have morphological differences from the original bone that
seem to be related to the original deformations.

The least efficient retrodeformation of bent bone shows
that the highest distances are localized toward the proximal
epiphysis (Fig. 3A). Compaction and expansion are observed
symmetrically on both medial and lateral sides of the folding
angle, causing a shift of the proximal part of the diaphysis.
The least efficient retrodeformation for twisted bone shows
a full flactening of the diaphysis (Fig. 3B).

SIMULATION OF TAPHONOMIC

DEGRADATIONS ON RHINO FEMORA

The smallest distance measured for rhino femora is 6.39 mm
(1.2% of maximal height) whereas the greatest is 9.77 mm
(2% of maximal height) (Fig. 3). The distances measured for
stretched, flattened and bent bones are lower than for twisted
bones (Fig. 4). The range (difference between minimum and
maximum distances within each deformation type) is lower
for stretched, flattened and bent bones than for twisted bones
(Fig. 4). The range increases from bent to stretched to flattened
bones (Fig. 4), indicating that measures of distances are more
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spread for twisted bones than for the other categories. The
median is closer to the third quartile than to the first quar-
tile for bent, stretched and twisted bones (Fig. 4). This is the
opposite case for flattened bones. This suggests that there are
more high distances measured for flattened bones than for the
other categories. The curve of density shows that most of the
distances measured between original and retrodeformed bones
within each category of deformations are concentrated around
the median for stretched bones, higher than the median for
flattened and bent bones, and lower than the median for twisted
bones (Fig. 4). This shows that high distances are more similar
for flattened and stretched bones than for twisted bones and
that distances for stretched bones have a normal distribution.

Although bent bones have the lowest range, the curve of
density shows that most of the distances measured in this
category are still higher than those for stretched and flatcened
bones. Therefore, it is possible to rank the different types of
deformations from the most to the least efficient retrodeforma-
tions: 1) stretching; 2) flactening; 3) bending and (4) twisting.

Least efficient retrodeformations for each type of deformation
are selected according to previous results in order to produce
heatmaps (Fig. 5). No recurring inconsistencies were identi-
fied on bent, flattened and stretched rhino femora. However,
twisted bones display a flattening along the full extent of the
diaphysis (Fig. 5).

Results show that the efficiency of TPS retrodeformation
depends on the type of taphonomic deformation that altered
the bone. Stretched and flattened bones are more likely to lead
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to a more efficient retrodeformation than bent and especially
twisted bones. This is also the case when the retrodeformation
is applied using two morphologically different bones from
the same species. This shows that intraspecific morphological
variation does not affect the efficiency of retrodeformation
and its dependency to deformation types. However, distances
measured across all types of deformations are globally higher
for rhinos than horses. This means that using a different
specimen as a reference — which is ultimately the aim of the
TPS retrodeformation — introduces more uncertainties in
the process of estimating the original morphology of a bone,
which is always the case for fossil bones. The combination
of anatomical landmarks and sliding semi-landmarks offers
a better covering of the overall biological shape of an object
(Botton-Divet et al. 2015; Goswami et /. 2019). This means
that less interpolation will be computed between the deformed
bone and the reference. Results show that retrodeformation
effectiveness remains consistent between the two iterations as
the retrodeformation between different closely related specimens
— rhino femora — still produces the same trend of results than
with the original specimen as a reference — the horse femur.

APPLICATION TO A FOSSIL SAMPLE OF PROSAUROPODS

Bones affected by twisting, which was identified as the worst
managed deformation in the first part, were retrodeformed for
left SMNS 91296 (F10), SMNS 13200, SMNS 91306 (F48),
left GPIT_RE 7288 and SMNS 81914 (F8). As a result, a slight
flattening of the diaphysis is observable on SMNS 81914 (F8),
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Fic. 4. — Measured distances for retrodeformed rhino bones. The distances between the surfaces of the undeformed femur and the retrodeformed ones using a
different undeformed femur (ordinate) were sorted by types of deformations (abscissa). Dots represent each measurement and their variation along the abscissa
was randomized for visibility. Boxplot and density plot allow us to visualize the distribution within each type of deformation.

left SMNS 91296 (F10) and left GPIT_RE7288 (Fig. 6). Bent
bones were also retrodeformed for right SMNS 53537 and
GPITN uncatalogued. However, SMNS 6017, SMNS5715,
left SMNS57539 and SMNS 12220 seem problematic regard-
ing this deformation (Fig. 6). Entirely flattened bones were
retrodeformed for right SMNS 91296 (F10) and SMNS 5715
but were more problematic for SMNS 57539, SMNS12220
and SMNS12354c. Partially flatctened bones were also ret-
rodeformed for left SMNS 91300 (F27), F48 and left and
right SMNS 91296 (F10) (Fig. 6). Stretched bones were also
retrodeformed for right SMNS 91310 (F65), SMNS 53537
and SMINS 13200 (Fig. 6). Every deformed bone shows a
noticeable difference after the retrodeformation process except
for SMNS 5715, SMNS 57539 and SMNS 12220, whereas
SMNS 12354c¢ shows a greater retrodeformation than the
others (Fig. 6).

DISCUSSION

RETRODEFORMATION EFFECTIVENESS DEPENDS

ON DEFORMATION TYPES

Retrodeformations of horse femora were more efficient for flat-
tened, stretched and bent bones than for twisted ones (Fig. 2).
Bent bones were less efficiently retrodeformed in the study of

COMPTES RENDUS PALEVOL - 2022 - 21 (9)

horse femora. In fact, twisting and bending are localized on
a particular area of the bone and cannot be applied globally
like flattening and stretching. Moreover, retrodeformations
of flattened and stretched bones were best managed when
these deformations were applied to the entire bone rather
than to localized areas (Fig. 7). These elements suggest that
the more homogeneous — or affine — the deformation is, the
more efficient the retrodeformation is deemed to be. The same
results were observed with the study of rhino femora except
for globally stretched bones, which were not better managed
than locally stretched ones.

Retrodeformations of twisted and bent bones always triggered
recurring inconsistencies between the original and retrode-
formed bones (Fig. 4), which was not the case for flatccened and
stretched bones. These recurring inconsistencies are linked to the
deformation parameters. In the case of twisted bones, the more
important the twisting angle is on the deformed bone, the more
flattened the shaft is on the retrodeformed bone. In the case of
bent bones, the orientation of the bending angle affected the
localisation of compactions and expansions of surfaces on the
lateral or medial sides on the retrodeformed bone. Because of
these recurring patterns of inconsistencies, these observations
allow us to specify the limitations of surface interpolation in the
case of these two types of taphonomic deformations. Moreover,
these surface inconsistencies are located on areas that bear the
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fewest landmarks. This observation shows that surfaces with
only a few landmarks were more interpolated than surfaces
with more. The same results were observed on twisted rhino
femora but not on bent ones.

THE EFFECT OF MORPHOLOGICAL VARIATION

ON RETRODEFORMATION EFFICIENCY

The fact that the same results were observed using a different
femur from the same species as a reference shows that the retro-
deformation is still operational when introducing intraspecific
morphological variation. This similarity suggests that the mor-
phological diversity in the sample of sauropodomorph femora
would not negatively affect the retrodeformation efficiency. Fur-
thermore, differences between results of horse and rhino femora
are subtle: lowest distances measured are 0.1% and 1.2% of the
maximal height of horse and rhino respectively. Despite being
low, these differences also tell us about the effect of intraspecific
morphological variation on the retrodeformation efficiency. Two
main differences were observed between the results. Bent rhino
femora did not produce recurring inconsistencies and globally
stretched rhino femora were not more efficiently retrodeformed
than locally stretched ones. This can be explained by the fact
that intraspecific variability increases the morphological diversity
and reduces the importance of taphonomic deformations in
the measurements. Thus, the introduction of morphological
diversity would lower the effect of taphonomic deformations
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on the retrodeformation efficiency, especially those caused by
bending and localized stretching, as shown by results on rhino
femora (Fig. 3). This aspect is of interest regarding the potential
application of this methodology to a fossil sample, because it
suggests that retrodeformation will be more eflicient because
there will always be morphological diversity in a real sample.
However, it is sometimes not possible to select a reference
bone from the same species as the deformed one. In that case,
it remains important to select a reference that is morphologi-
cally as close as possible.

APPLICATION TO A FOSSIL SAMPLE
Stretched bones were retrodeformed consistently with obser-
vations from horse and rhino femora. No global stretching
deformation was identified in this sample. Consistent with
previous results, twisted bones were retrodeformed but with
the appearance of a slight flactening of the diaphysis. These
two types of deformation were retrodeformed with the same
efficiency as in the study of horse and rhino femora.
Retrodeformation seems not efficient for SMNS 5715,
SMNS 57539 and SMNS 12220 (Fig. 6A). Deformations
identified on these bones were a combination of local bending
and medium or high global flattening. These three bones are the
only ones that bear this specific combination of deformations.
This suggests that this specific combination leads to a non-efficient
retrodeformation and that it should be studied with caution.
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A
R SMNS 91296 (F10) SMNS 91310 (F65) SMNS 81914 (F8) L SMNS 91300 (F27)
SMNS 5715 SMNS 57539 SMNS 12220 SMNS 12354c
B
Right
SMNS 53537 GPIT uncatalogued SMNS 60174
SMNS 91306 (F48) L GPIT_RE 7288

Fic. 6. — Retrodeformations of prosauropod femora in: A, lateral view; B, posterior view; C, 3D distal view. Original bones are shown in green whereas retrode-
formed ones are in red. Landmarks of each bone are indicated with the same colours.
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(circles) and local (triangles) deformations.

Because no combination of deformations was studied on horse
and rhino femora, it is safer to warn about the efficiency of TPS
retrodeformation in regard to combination of deformations
in general.

Retrodeformation of SMNS12354c revealed a morphology
that seems highly stretched compared to other bones (Fig. 6.A).
This bone was diagnosed with a globally high flattening. Studies
of horse and rhino femora showed that high intensity defor-
mations were the least efficiently retrodeformed for each type
of deformation. Thus, results are consistent even though this
bone is the only one with an exaggerated retrodeformation. This
phenomenon could be explained by the fact that the number
of landmarks is lower than for horse and rhino femora. This
could also result from a locally high taphonomic degradation
on an area with a landmark that drove the interpolation with
an intensity higher than required.

Left and right femora of SMNS53537 bear different tapho-
nomic deformations even though they come from the same
individual (Fig. 6; Table 1). This is probably because these bones
were positioned differently when they underwent taphonomic
deformation under the same geological constraint (Miiller
et al. 2018). The two retrodeformed bones of SMNS53537
show an overall resemblance that was not obvious before the
retrodeformation was performed (Fig. 6B). This shows that
the retrodeformation allowed us to remove the taphonomic
component to highlight the biological information at the
intra-individual level.

CONCLUSION

This study shows the capacity of estimating the original mor-
phology of an asymmetrical object by the use of 7hin-Plate
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spline deformation. Using a single bone deformed iteratively,
we highlighted that flattening and stretching were efficiently
retrodeformed with this approach, especially when they extended
along the whole bone, leading to affine deformations. This is
a promising result because these deformations are frequenty
observed among fossils. However, twisting of medium and high
intensity as well as bending are complex taphonomic deforma-
tions that could be difficult to retrodeform. We recommend
not to apply this type of retrodeformation to highly — or even
moderately — twisted specimens. Results also showed that ret-
rodeformation efficiency remained consistent between each
iteration after introducing morphological variation and sliding
semi-landmarks on curves. These different approaches widen
the scope of application of retrodeformation by TPS to differ-
ent cases. Specifying these aspects by defining a threshold of
landmark density would also allow us to define a sub-sample
of landmarks dedicated to retrodeformation and another one
to perform geometric morphometric analysis.
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The potential and limits of 7hin-Plate Spline retrodeformation on asymmetrical objects 4

APPENDIX

APPENDIX 1. — Distances between the horse original bone and every retrodeformed one. All retrodeformed bones are plotted in abscissa with their associated
distances with the original (inter-quartile distance) in ordinate. Types of deformation are represented by the coloured geometrical shapes. Intensities of defor-
mations are figured by rectangles increasingly filled along abscissa.
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