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ABSTRACT
The distribution data of 18 categories (including 446 species) of bryophytes in 66 islands of the 
Zhoushan Archipelago, China were complied. By using the matrix temperature and the NODF 
metrics under six null models, we evaluated their nestedness levels and explored possible mechanisms 
to form nested distribution with partial Spearman correlation and the random placement model. 
The main results were as follows: 1) all the 18 categories of bryophytes exhibited a high degree of 
nestedness; 2) nestedness level was higher for mosses than liverworts, higher for acrocarpous mosses 
than pleurocarpous mosses, and also varied among families; 3) the nested distribution of bryophytes 
in the archipelago was not due to passive sampling, but mainly due to nested habitats and selective-
extinction; 4) spore size might be a factor linked to selective-colonization accounting for nestedness 
of some bryophyte categories; and 5) nestedness level was higher for families with a high proportion 
of generalists than those with a high proportion of specialists, the conservation of the latter should 
cover more islands (patches).

RÉSUMÉ
Quantifier et interpréter l’imbrication des bryophytes dans l’archipel de Zhoushan, Chine.
Les données de distribution de 18 catégories (comprenant 446 espèces) de bryophytes dans 66 îles de 
l’archipel de Zhoushan, en Chine, ont été compilées. En utilisant la température de la matrice et les 
métriques NODF sous six modèles nuls, nous avons évalué leurs niveaux d’imbrication et exploré les 
mécanismes possibles pour former une distribution imbriquée avec la corrélation partielle de Spearman 
et le modèle de placement aléatoire. Les principaux résultats sont les suivants : 1) les 18 catégories de 
bryophytes présentaient un degré élevé d’imbrication ; 2) le niveau d’imbrication était plus élevé pour 
les mousses que pour les hépatiques, plus élevé pour les mousses acrocarpiques que pour les mousses 
pleurocarpiques, et variait également entre les familles ; 3) la distribution imbriquée des bryophytes 
dans l’archipel n’était pas due à un échantillonnage passif, mais principalement à des habitats imbri-
qués et à une extinction sélective ; 4) la taille des spores pourrait être un facteur lié à la colonisation 
sélective expliquant l’imbrication de certaines catégories de bryophytes ; et 5) le niveau d’imbrication 
était plus élevé pour les familles avec une forte proportion de généralistes que pour celles avec une 
forte proportion de spécialistes, la conservation de ces dernières devrait couvrir plus d’îles (ilôts).
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INTRODUCTION

Detecting distribution patterns and understanding their origin 
is an important aspect of ecology. Conservation of any taxa 
in a certain area requires data on the distributional patterns 
of species richness (Hokkanen et al. 2009).

Nestedness is one of the distribution patterns of regional 
biotas (Gaston & Blackburn 2000), depicting a scene in 
which species occurring at species-poor islands are always 
present in a more species-rich island (Patterson & Atmar 
1986). Numerous studies have investigated nestedness and 
underlying processes in a wide range of taxa on both islands 
and fragmented habitats, and nestedness was considered as 
common for biotas throughout the world (Patterson & Atmar 
1986; Atmar & Patterson 1993; Perry et al. 1998; Fischer & 
Lindenmayer 2005; Schouten et al. 2007; Wang et al. 2010; 
Dennis et al. 2012; Gao & Perry 2016). Nestedness has gradu-
ally become an important part of the theoretical framework 
of island biogeography and conservation biology (Patterson 
1987; Lindenmayer & Fischer 2007; Whittaker & Fernández-
Palacios 2007; Xu et al. 2017).

One of the most significant contributions of nested subset 
theory to conservation biology was to inform managers what 
size patches should be reserved in a fragmented landscape 
(Berglund & Jonsson 2003), which was related to the SLOSS 
debate. The SLOSS (a single large or several small) debate 
originated from the application of island biogeography theory 
to reserve network design (Quinn & Harrison 1988). The core 
question of SLOSS debate was whether a single large (SL) or 
(O) several small (SS) reserves, with the same combined habitat 
area, harbor an equal number of species and are preferable as 
conservational units, and thus be equally valuable for conser-
vation purposes. The strategy of SLOSS depends on the level 
of species nestedness (Ovaskainen 2002). Patterson (1987) 
once pointed out that in a fragmented system perfectly nested 
by patch size, the largest patch will harbor more species than 
any number of small patches together. In such a system, all 
species of conservation concern will co-occur in the largest 
patch. Therefore, analyses of nestedness can provide a useful 
complementary tool to address the SLOSS problem in con-
servation biology (Patterson 1987; Wright & Reeves 1992).

There are four general hypotheses explaining nested distribu-
tion, i.e., passive sampling hypothesis (Andrén 1994; Cutler 
1994; Higgins et al. 2006; Moore & Swihart 2007), selective 
extinction hypothesis (Wright et al. 1998; Tiselius 2016), 
selective colonization hypothesis (Cook & Quinn 1995) and 
habitat nestedness hypothesis (Calmé & Desrochers 1999; 
Honnay et al. 1999). The passive sampling hypothesis predicts 
that nested distribution could arise from random samples of 
species differing in their relative abundance (Higgins et al. 
2006), which simply reflects a sampling effect. Therefore data 
should be tested for passive sampling prior to other hypotheses 
(Worthen et al. 1996; Wright et al. 1998). Nestedness may 
occur from the selective extinction of species across islands 
(Tiselius 2016; Xu et al. 2017). Most studies suggested that 
selective extinction causes a high level of nestedness in conti-
nental archipelagos and insular habitats (Patterson 1987, 1990; 

Cutler 1991; Atmar & Patterson 1993; Wang et al. 2010; Xu 
et al. 2017). According to the selective-extinction hypothesis, 
in systems experiencing species loss, species would disappear 
from sites in a predictable sequence and thus lead to nestedness 
(Patterson 1984; Simberloff & Levin 1985). The area is the 
main factor accounting for nestedness because species with 
large minimum-area requirements and small population size 
have higher extinction risks (Wright et al. 1998; Patterson & 
Atmar 2000; Watling & Donnelly 2006; Xu et al. 2017). 
The habitat nestedness hypothesis considers the nestedness 
of species assemblages as a result of nested habitats (Wright 
et al. 1998; Calmé & Desrochers 1999; Honnay et al. 1999; 
Tiselius 2016). The selective colonization hypothesis is that 
habitat isolation would create nested subsets through a disper-
sal limitation because species with different dispersal capaci-
ties vary in their ability to colonize distant sites (Darlington 
1957; Patterson 1987). Understanding the mechanisms that 
influence nestedness is important for conservation and can 
be used to direct management efforts (Patterson 1987). The 
mechanisms of nestedness varied among different taxa and 
in different fragmented landscapes (Matthews et al. 2015).

Discrepancies still exist in the effects of life-history traits on 
distribution. Kadmon (1995) reported that wind-dispersing 
plant species showed no evidence of nested occurrence, while 
species lacking a long-distance dispersal capacity showed 
a strong pattern of nestedenss. However, Cook & Quinn 
(1995) advocated that colonization ability was important in 
producing nested subsets as good dispersers often exhibited a 
greater degree of nestedness than poor dispersers. Therefore, 
nested pattern and their mechanisms are likely taxon-specific.

Because nestedness is related to dispersal and colonization 
ability, and such ability is further determined by a combination 
of its biological characteristics (Dennis et al. 2012). The size 
of spores of bryophytes substantially impacted their dispersal 
distance and colonization rates (Zanatta et al. 2016, 2020), 
and should be a potential feature influencing the nested dis-
tribution of bryophytes because spore size exerts influences 
on dispersal capacity and establishment rate. However, there 
has been no work on the relationship between nested distri-
bution patterns and spore size.

Simberloff & Martin (1991) once suggested that virtually 
all insular systems were nested to a certain degree. However, 
a debate is ongoing on the prevalence of nestedness among 
biotas, and among different landscapes and habitat conditions. 
After recalculation by using the NODF metric (an acronym 
for nestedness metric based on Overlap and Decreasing Fill), 
Matthews et al. (2015) thought that nestedness was thought 
to be less common than previously reported. The NODF 
metric allows nestedness to be calculated independently 
for matrix rows and matrix columns, as well as combined 
for the whole matrix. NODF was not sensitive to matrix 
size of fill, and less prone to Type I errors, thus generally 
considered one of the most appropriate nestedness metrics 
(Almeida-Neto et al. 2008; Morrison 2013; Gao & Perry 
2016; Tiselius 2016). Therefore, further studies are still 
needed for the settlement of the above disputes by using 
the NODF metric.
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Bryophytes, the amphibians of the ‘Plant Kingdom’, and 
the second largest group of higher plants next only to the 
angiosperms, constitute a fascinating component of biodi-
versity and are widely spread in almost all climatic condi-
tions (Vanderpoorten & Goffinet 2009). Bryophytes exhibit 
specific eco-physiological features and life-history traits. 
They are poikilohydric with dominant gametophytes, often 
highly sensitive to habitats, and many species are capable of 
long-distance dispersal (He et al. 2016). Therefore, bryo-
phytes represent an alternative strategy for survival in ter-
restrial environments, and the results obtained from studies 
of tracheophytes cannot be generalized to bryophytes (He 
et al. 2016). Bryophytes likely have their own distribution 
pattern in island systems owing to their specific eco-physi-
ological features and life-history traits (Patiño et al. 2014). 
Although previous studies on nestedness covered a wide 
range of taxa, relatively few studies focused on bryophytes. 
Vanderpoorten et al. (2005) reported that bryophyte com-
munities exhibited nestedness at a landscape scale. In boreal 
streamside forests, Hylander & Dynesius (2006) found that 
species composition was significantly nested for bryophytes. 
They detected a strong positive correlation of nestedness of 
bryophytes with species richness of vascular plants. Mateo 
et al. (2016) examined the spatial variation of species rich-
ness in European bryophytes and found that liverworts 
exhibited a higher level of nestedness than mosses. Aranda 
et al. (2013) found that nestedness was higher in bryophytes 
than in seed plants in the macaronesian flora. They suggested 
that the higher dispersal capacity resulted in more similar 
and compositionally nested island floras. Peintinger et al. 
(2003) detected a nested pattern of bryophyte distribution 
in fragmented wetland habitat islands by using the method 
of Wright & Reeves (1992), but no non-random pattern 
by using the method of Brualdi & Sanderson (1999). Tise-
lius (2016) used the NODF metric to evaluate the nested-
ness level of bryophytes in a northern Swedish archipelago 
and found that the nested distribution of bryophytes was 
attributed to the habitat filtering process. Nestedness has 
been generally reported in bryophytes but its mechanisms 
behind are still under debate. These sporadic studies have 
drawn attention to the nestedness of bryophytes and their 
mechanisms. Further studies on bryophytes in fragmented 
landscapes are not only important in designing refuges for 
bryophyte conservation, but also needed for settlement of 
the general disputes on nestedness.

The Zhoushan Archipelago, a typical fragmented landscape, 
is the largest in China, comprising 1339 continental islands 
with a total land area of 1371 km2 (The Editorial Board of 
the Island Chronicles of China 2014a, b). These islands differ 
in area, elevation, and habitat types (Fig. 1; Appendices 1; 4). 
Bryophytes on the archipelago are thus an ideal system to 
provide new evidence for the settlement of relevant disputes 
on the prevalence of nested distribution and the mechanisms 
to form nested distribution patterns. Our objectives were: 
1) to quantify the level of nestedness of bryophytes; and 2) 
to determine the mechanisms underlying the nestedness of 
bryophyte flora in the Zhoushan Archipelago.

MATERIAL AND METHODS

Study region

The Zhoushan Archipelago is located in the East China Sea 
(29°31’31.04”N, 121°30’123.25”E) in the northeast of Zhe-
jiang Province (Fig. 1). The archipelago was connected to the 
mainland during the glacial period, and all the islands were 
separated from the mainland 7000-9000 years ago by the 
rising sea level during the Holocene (Wang & Wang 1980). 
The highest peak of the archipelago has an elevation of 544 m 
in the Taohua Island. The climate is typical of a subtropical 
ocean monsoon zone and is highly seasonal, the average annual 
temperature ranges from 16.0ºC to 16.4ºC. August is the hot-
test month with an average temperature ranging from 26.8ºC 
to 27.2ºC, while January is the coldest month with average 
temperatures ranging from 5.3ºC to 5.7ºC (Song 2001). The 
mean annual rainfall is c. 1243.5 mm (Song 2001). During 
the long history of human activity on the archipelago, the 
original old-growth broadleaved forests on some larger islands 
have been mostly destroyed. The larger islands are dominated 
by cultivated forests of Pinus massoniana Lamb., with relicts 
of secondary evergreen broad-leaved forests (The Editorial 
Board of the Island Chronicles of China 2014a, b). A set of 
66 islands were selected representing a gradient of the area 
and maximal elevation (Appendix 1).

DATA sOURCES

We didn’t use quantitative sampling methods to obtain 
abundance data of species, only recorded species occurrence 
on each island, because we quantified the nestedness level of 
bryophytes in the archipelago by using the matrix tempera-
ture and the NODF metric based on presence/absence data 
of 466 species in 66 islands.

Four field collections (May 1-7, 2014; Jul. 25-Aug. 10, 2016; 
May 1-10, 2017; Jul. 20-Aug. 10, 2017) were conducted. 
Each island was surveyed twice during May and July to 
August. The same team of researchers visited each island with 
a comparable survey time taken for each inventory. On each 
island, we tried our best to search all different habitat types, 
and continued collection until no additional bryophyte spe-
cies were found (Yu et al. 2019), which ensured us to obtain a 
complete species list of bryophytes for each island, and made 
the data comparable. A total of 446 species of bryophytes on 
the 66 islands were identified, which included 367 mosses 
and 79 liverworts. The occurrence (presence or absence) and 
specimen number of these species on each island were listed 
in Appendix 2 and Appendix 3, respectively.

Habitat types are not equally distributed among the 
66 islands. Different habitat types exhibit different capaci-
ties in maintaining species richness and species groups. We 
enumerated the habitat types presented on each island fol-
lowing the approach suggested by Triantis et al. (2006). 
Habitat types on each island were recorded mainly based on 
our observations in situ and the documents of the Editorial 
Board of the Island Chronicles of China (2014a, b), which 
have been listed in Appendix 4. Definitions of each habitat 
type are listed in Appendix 5.

https://www.openstreetmap.org/?mlat=29.5252777777778&mlon=121.534166666667#map=11/29.5252777777778/121.534166666667
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Because only 79 liverworts were recorded and information 
of spore size for some species was unavailable, the sample size 
of liverworts is too small for us to further analyze the effect 
of spore size on nested distribution. Data of spore size for 
303 moss species were available and recorded from relevant 
literature (Appendix 2), thus we analyzed the effect of spore 
size on nested distribution for mosses.

Data analysis

Distribution patterns and responses to environmental factors 
are often taxon-specific (Patiño et al. 2013). Therefore, 18 cat-
egories (total bryophytes, total mosses, liverworts, acrocarpous 
mosses, and pleurocarpous mosses, and 13 families each with 
more than ten species) were incorporated into the analyses. 
These 13 families were Brachytheciaceae Schimp., Bryaceae 
Rchb., Fissidentaceae Schimp., Funariaceae Schwägr., Hyp-
naceae Schimp., Leskaceae Schimp., Leucobryaceae Schimp., 
Mniaceae Schwägr., Polytrichaceae Schwägr., Pottiaceae 
Hampe, Thuidiaceae Schimp., Lejeuneaceae Rostovzev, and 
Lophocoleaceae Müll. Frib. ex Vanden Berghen.

The most widely used nestedness metric is the matrix tem-
perature (Atmar & Patterson 1993; Schouten et al. 2007; 
Meyer & Kalko 2008; Zhang et al. 2008; Frick et al. 2009; 
Heino et al. 2009; Wang et al. 2012, 2013, 2019; Li et al. 
2013). The matrix temperature is the normalized sum of the 
squared relative distances of absences above and presences below 
a hypothetical isocline separating occupied from unoccupied 
areas of a perfectly nested matrix. The temperature varies 
from 0 for a perfectly nested matrix and 100 for a maximally 
‘unnested’ matrix (Rodríguéz-Gironés & Santamaría 2006). 
The NODF metric, another metric based on the overlap and 
decreasing fill, allows nestedness to be calculated independently 
for matrix rows (i.e., nestedness amongst islands) and matrix 
columns (i.e., nestedness amongst species incidences), as well 
as combined for the whole matrix (Almeida-Neto et al. 2008). 
The NODF varies from 100 for a perfectly nested matrix and 0 
for a maximally ‘unnested’ matrix (Almeida-Neto et al. 2008), 
it has been generally considered one of the most appropri-
ate nestedness metrics (Almeida-Neto et al. 2008; Morrison 
2013; Gao & Perry 2016; Tiselius 2016).

We used the matrix temperature and the NODF metric to 
quantify the levels of nestedness for 18 bryophyte categories 
in the Zhoushan Archipelago, which allows comparison with 
previous literature. The NeD program (Strona et al. 2014) 
was used to calculate the above two metrics with presence/
absence data of 466 species in 66 islands (row = species; col-
umn = islands in the matrix).

The statistical significance of any nestedness metric value 
has to be tested against some null hypotheses. However, which 
combination of metrics and null models should be used in 
each particular circumstance is a matter of debate (Ulrich & 
Gotelli 2007; Ulrich et al. 2009). We used the null models 
in the NeD program to evaluate the significance of the nest-
edness level of 18 bryophyte categories. Five null models are 
EE (maintains the total number of species occurrences in the 
matrix, but allows both row and column totals to vary freely), 
CE (assigns to each matrix cell a probability to be occupied 

proportional to the corresponding row and column totals), 
EF (maintains observed column totals, but allows row totals 
to vary randomly), FE (maintains observed row totals but 
allows column totals to vary randomly), and FF (maintains 
both observed row and column totals) (Strona et al. 2014).

The BINMATNEST program also provides three alterna-
tive null models to assess the statistical significance of matrix 
temperature. Among them, the null model 3 provides the best 
performance in the evaluation of nestedness level of datasets, 
resulting in the smallest type I error (Rodríguéz-Gironés & 
Santamaría 2006). The null model 3 was thus used to evalu-
ate whether the 18 bryophyte categories were significantly 
nested for comparison with previous work. For all the other 
parameters, the recommended default settings of the BIN-
MATNEST were used.

The above-observed nestedness indices were compared with 
the expected values of 2000 randomly generated matrices 
under focal null models.

The random placement model was used to determine whether 
passive sampling could be used to account for nested distribution 
patterns of bryophytes in the Zhoushan Archipelago. Accord-
ing to the random placement model, the expected number of 
species in Island j (j = 1, 2, 3, … n; n = number of islands), 
Sj, could be calculated as follows (Moore & Swihart 2007):

Where S is the total number of species in focal islands; aj 
is the relative area of Island j; Aj is the area of Island j; ni is 
the total occurrence number of species i in Island j, which 
is represented by specimen number of species i in Island j; 2 
is the variance of the expected number of species in Island j.

The random placement model can be rejected if more than 
one-third of the observed values lie outside ± one standard 
deviation of the expected values (Coleman et al. 1982; Moore & 
Swihart 2007; Wang et al. 2010).

In the maximally packed matrix produced by using the 
NeD program, the most species-rich island was placed 
along the top row and the most widely distributed species 
was placed in the leftmost column, both the other species 
and islands are decreasingly ordered from the most species-
rich island to the least species-rich island and from the 
most common to the least common species, respectively. 
The rank of islands in the maximally packed matrix can be 
compared with environmental variables of the islands to 
evaluate their contributions to the nested pattern (Patter-
son & Atmar 2000). Because island area and elevation were 
highly correlated, to detect the independent contribution 
of the two island attributes on the nested distribution of 
bryophytes, partial Spearman rank correlation between the 
island rank in the maximally packed matrix of bryophyte 
distribution and the rank of focal island attribute were cal-
culated (Shipley 2000; Azeria & Kolasa 2008; Frick et al. 
2009; Wang et al. 2010).

𝑆𝑆! = S − ∑ (1 − 𝑎𝑎!)"#$
#%& ; 𝑎𝑎! =

𝐴𝐴!
∑ 𝐴𝐴!"
!%&

+ ;  1 

 𝜎𝜎' = ∑ (1 − 𝑎𝑎!)"#$
#%& − ∑ (1 − 𝑎𝑎!)'"#$

#%&  2 
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To clarify the value of the habitat nestedness hypothesis in 
explaining the nested distribution of bryophytes, the NeD 
program was also used to quantify the level of habitat nest-
edness by calculating the matrix temperature and NODF 
metrics of the presence/absence matrix of habitat types, and 
to provide the island rank in the maximally packed matrix 
of habitat type presence/absence distribution. The spearman 
rank correlations between the island rank in the maximally 
packed matrix of bryophyte presence/absence distribution 
and that of habitat types were calculated.

To clarify the effects of spore size on the nested distribution 
of mosses, spearman regressions were performed to clarify the 
relationship between the rank of spore size (from small to 
large) and the rank of species in the maximally packed matrix 
(from left to right, or from the most common to the least 

common species). Considering the availability of spore size 
data, only total mosses, acrocarpous mosses, pleurocarpous 
mosses, Bryaceae, and Pottiaceae were included in the analyses.

RESULTS

Under null models CE, EE, FE, the distribution of all bryophyte 
categories in 66 islands were significantly nested by using either 
matrix temperature or NODF metrics, most with P < 0.001, 
a few with P < 0.01 or 0.05. Under the EF null model, except 
Leskaceae, Polytrichaceae, Lejeuneaceae and Lophocoleaceae, 
all other 14 categories were significantly nested, most with 
P < 0.001. However, under the null model FF, no significant 
nestedness was detected for most bryophyte categories (Table 1). 

A

B

C

A

B C

6

17

27

21

20

43

66

58

48
44

60

37
32

38

50
45

26
25 24 12

59

30

56

14
11

61

10

29

22 64
41

15 1
9

23

40

19

42
35

39
18 65

49

52

53
34

1357

55262
54

3 4

47
6316

2833 7

551

121°30’0’’E 122°0’0’’ 122°0’0’’

East China Sea

CHINA

Fig. 1. — Location and map of 66 islands in the Zhoushan Archipelago (Yu et al. 2019).
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Under the null model 3 in the BINMATNEST program, sig-
nificant nested patterns were detected for all 18 categories of 
bryophytes (Appendix 6).

 If considering the ratios of mean expected matrix tem-
perature (under the null models CE, EE, FE and EF) to the 
observed temperature, mosses (6173) were more strongly nested 
than liverworts (2584), and acrocarpous mosses (5464) more 
strongly than pleurocarpous mosses (3597). Pottiaceae (5435) 
were the most strongly nested family, followed (in decreasing 
order) by Bryaceae (4505), Thuidiaceae (4049), Hypnaceae 
(3922), Mniaceae (3058), Brachytheciaceae (2710), Leucobry-
aceae (2439), Lophocoleaceae (2358), Fissidentaceae (2283), 
Funariaceae (2016), Polytrichaceae (1727), Lejeuneaceae 
(1706), and Leskaceae (1527).

For all the 18 categories of bryophytes, more than one-third 
of islands whose observed species richness values lie outside 
± one standard deviation of the expected values under the 
null model proposed by Moore & Swihart (2007) (Table 2; 
Appendix 7), thus their significant nestedness levels were not 
due to passive sampling.

Habitat types in the 66 islands was significantly nested 
(P-values < 0.001) by either matrix temperature or NODF 
under four null models (EE, EF, FE and CF), but not signifi-
cantly by both metrics under the FF null model (Table 3).

Significantly positive Spearman correlations were detected 
between the ranks of the islands in the maximally packed 
matrix of species distribution and those of habitat types 
for total bryophytes, total mosses, liverworts, acrocarpous 
mosses, pleurocarpous mosses, and eight families includ-
ing Brachytheciaceae, Bryaceae, Fissidentaceae, Pottiaceae, 
Funariaceae, Hypnaceae, Leucobryaceae and Thuidiaceae 
(P < 0.001), Mniaceae (P < 0.002), Lejeuneaceae and Pol-Ta
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Table 2. — Results tested by using the passive sampling model for 18 bryo-
phyte categories in the Zhoushan Archipelago. Note: Observed value, number 
of islands with focal bryophyte category; Outside value, number of islands 
whose observed species richness of focal bryophyte category lie outside ± one 
standard deviation of the expected species richness based on the null model 
proposed by Moore & Swihart (2007).

Categories
Observed 

value
Outside  

value

Outside value 
/observed 
value × 100 

(%)
Bryophytes 66 59 89.39
Mosses 66 58 87.88
Liverworts 47 30 63.89
Acrocarpous mosses 66 56 84.85
Pleurocarpous mosses 43 34 79.07
Brachytheciaceae 41 28 68.29
Bryaceae 62 51 82.26
Fissidentaceae 44 30 68.18
Funariaceae 45 38 84.44
Hypnaceae 35 25 71.43
Lejeuneaceae 34 23 67.65
Leskaceae 32 23 71.88
Leucobryaceae 34 24 70.59
Lophocoleaceae 34 23 67.65
Mniaceae 33 20 60.61
Polytrichaceae 28 16 57.14
Pottiaceae 64 53 82.81
Thuidiaceae 41 22 53.66
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ytrichaceae (P < 0.05), but not for Lophocoleaceae (P < 0.2) 
and Leskaceae (P < 0.5) (Table 4).

The ranks of island area was significantly positively cor-
related (P < 0.05) with the ranks of the islands in the maxi-
mally packed matrices of 12 of the 18 bryophyte categories. 
No significant correlations (P > 0.05) were found for pleu-
rocarous mosses, Brachytheciaceae, liverworts, Funariaceae, 
Leskaceae, and Lejeuneaceae. Elevation was significantly 
positively correlated (P < 0.05) with the ranks of the islands 
in the maximally packed matrices of total bryophytes, total 
mosses, and pleurocarpous mosses (Table 5).

The nested distribution of total mosses, acrocarpous mosses, 
and Pottiaceae was significantly related to spore size (Fig. 2). 
In Figure 2, species were ranked from the rarest to the most 
common in the maximally packed matrix, the species with 
the lowest rank has the narrowest distribution range, and the 
spore with the lowest rank has the smallest size. Therefore, 
the distribution range of the species expanded with increasing 
spore size for total mosses, acrocarpous mosses and Pottiaceae. 
No significant effect of spore size on nested distribution was 
detected for pleurocarpous mosses and Bryaceae in the study 
regions.

DISCUSSION

Although the nested distribution of a wide range of biotas 
has been detected, very few studies have been conducted on 
bryophytes. Our study is among the first to evaluate the level 
of nestedness of bryophyte distribution on Asian continental 
islands. Having compared the results of some other biotas 
with ours, we found that total bryophyte and total moss 
on continental islands have a higher level of nestedness in 
their distribution. For example, in the study of nestedness of 
birds, lizards, and small mammals on islands of an inundated 
lake, Wang et al. (2012) reported that the observed matrix 
temperatures were 18.29ºC, 15.58ºC and 9.94ºC for birds, 
lizards and mammals, respectively, while their corresponding 
expected values (under the null model 3 in the BINMATNEST 
program) were 48.23ºC, 34.60ºC and 29.53ºC, respectively. 
The ratios of the expected matrix temperature to the observed 
temperature of birds, lizards, and small mammals ranged 
between 2.941 and 2.222, while the rations by using the 
same method for total bryophyte and total moss are as high 
as 7.752 and 8.000, respectively (Appendix 6). Similar results 
were reported by Aranda et al. (2013) in their study of the 
Macaronesian flora where nestedness was higher in bryophytes 
than in seed plants. Bryophytes are spore-producing plants 

with long-distance dispersal capacities (Patiño et al. 2013). We 
hypothesized that the high level of nestedness for bryophytes 
in the Zhoushan Archipelago was possibly due to: 1) their 
strong dispersal abilities; 2) no species of bryophytes endemic 
to the archipelago; 3) a comparatively narrow geographical 
range of the archipelago; and 4) the 66 islands with a range of 
sizes. Because overall colonization rates must be high enough 
to quickly compensate for any irregularity in species distribu-
tion that might be created by local extinction, colonization-
generated patterns of nestedness should be expected in the 
species exhibiting strong dispersal abilities (Cook & Quinn 
1995). After having compared levels of nestedness among 
taxa with different dispersal abilities in many cases, Cook & 
Quinn (1995) found that taxa with a comparatively higher 
level of nestedness had stronger dispersal ability and endemic 
species typically reduced the overall level of nestedness in many 
cases. Aranda et al. (2013) also thought that higher dispersal 
capacity or the higher frequency of long-distance dispersal in 
bryophytes results in more similar and compositionally nested 
island bryophyte floras. It was understandable that the biotas 
of proximate islands exhibit a higher level of nestedness than 
those of distant islands (Cook & Quinn 1995). Additionally, 
differences in dispersal ability among species may interact 
with island isolation to produce nestedness (Darlington 
1957), because poor dispersers would be present only on the 
closest or most diverse islands, while strong dispersers would 
be present on most islands because of frequent colonization. 
Although bryophytes generally have a long-distance dispersal 
capacity, such capacity would vary among different species 
and categories with different spore sizes (Wills et al. 2018; 
Zanatta et al. 2020), and there still existed a dispersal restric-
tion for bryophytes (Zanatta et al. 2020). This was possibly 
another reason accounting for a higher nestedness level of 
bryophytes, and the variation of nestedness level among dif-
ferent categories of bryophytes.

Differences in nestedness levels are likely due to difference 
in their responses to habitats. Generalist species with extended 
niche breadths often occur in different environments, and their 
niches tend to overlap (Bastolla et al. 2009). Therefore, habitat 
generalist species tend to have a higher level of nestedness than 
habitat specialist species (Neves et al. 2020). The species of 
Bryaceae and Pottiacese are often distributed in anthropogenic 
habitats and many are habitat generalists (Preston et al. 2010; 
Blankenship et al. 2020), while epiphytic Leskaceae and epi-
phyllous Lejeuneaceae contained a high proportion of habitat 
specialists. The nestedness level of Bryaceae and Pottiaceae 
was much higher than that of Leskaceae and Lejeuneaceae, 
which confirmed the view of Neves et al. (2020) (Table 1).

Table 3. — Nestedness levels of 22 habitat types among 66 islands in Zhoushan Archipelago. Note: Tobs, Texp, Nobs, Nexp are observed matrix temperature, 
expected matrix temperature, observed matrix NODF and expected matrix NODF under five null models (CE, EE, EF, FE, FF), respectively. The expected value 
with superscript letter a indicates its difference from the observed value at P < 0.001.

Tobs
Texp with

Nobs
Nexp with

CE EE EF FE FF CE EE EF FE FF
7.421 44.051a 70.491a 47.180a 34.062a 7.342 90.259 64.158a 52.947a 58.994a 70.867a 90.533
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The statistical significance of any nestedness index value has 
to be tested against some null hypothesis. The NeD program 
provides five null models with presence-absence matrices. 
Among these five null models, the FF null model tends to 
retain part of the structure (particularly species numbers and 
occurrences) of the original matrix (Cook & Quinn 1998). 
Hence, it might fail to detect nestedness caused by very 
unequal species numbers and/or site occurrences. For such 
matrices, other null models that contain fewer constraints 
might be more appropriate (Ulrich & Gotelli 2007). In 
the Zhoushan Archipelago, records of the 446 species on 
the 66 islands highly varied, from one to three islands (222 
species) to 43-53 islands (four species). Meanwhile, species 
richness also highly varied among the 66 islands, from 3-5 
species (12 islands), 212 species in the Daishan Island, to 
232 species in the Zhoushan Island. Therefore, the FF null 
model was inappropriate and failed to detect the nestedness 
of bryophytes in the present study system, which was well 
detected under the other four null models.

Understanding the mechanisms influencing nestedness 
is important for conservation and can be used to direct 
management efforts (Patterson 1987). The passive sampling 
hypothesis predicts that nested distribution could arise from 
random samples of species differing in their relative abundance 
(Higgins et al. 2006), which simply reflects a sampling effect. 
Our analyses found that passive sampling played little part in 
forming the nested distribution of bryophytes in the Zhoushan 
Archipelago. According to Moore & Swihart (2007), the abun-
dance of species in fragmented patches (or islands) was used to 
test the passive sampling hypothesis. In the present study, we 
were unable to get the abundance data of bryophytes in the 
66 islands because of the high environmental complexity of 
the 66 islands and a relatively limited collecting time. Because 
each island was surveyed two times during May and July to 
August, and the same team of researchers visited each island, 
ensuring that all habitats were visited and a comparable time 

and efforts taken for each inventory. Generally speaking, the 
more the specimen of a species on a given island, the high the 
abundance of the species. Therefore, the occurrence data of 
species on islands were represented by the specimen number 
of these species collected from each island.

Most studies suggested that selective extinction causes a 
high level of nestedness in continental archipelagos and insu-
lar habitats (Patterson 1987, 1990; Cutler 1991; Atmar & 
Patterson 1993; Wang et al. 2010; Xu et al. 2017). The area 
is the main factor accounting for nestedness because species 
with large minimum-area requirements and small population 
size have higher extinction risks or elimination rates in a focal 
island (Darlington 1957; Patterson & Atmar 2000; Watling & 
Donnelly 2006; Xu et al. 2017). The area was more impor-
tant than elevation in determining the nested distribution 
of bryophytes in the Zhoushan Archipelago. Therefore, the 
nested distribution patterns of bryophytes in our system were 
likely attributed to, or at least partially to selective-extinction 
for bryophytes. Such a mechanism of area-related extinction 
to explain nestedness has also been reported for other bio-
tas (Feeley 2003; Wang et al. 2010; Xu et al. 2017). Besides 
area, elevation also exerted a significant effect on nestedness 
of total bryophytes, total mosses, liverworts, pleurocarpous 
mosses and slightly significant effects on that of acrocarpous 
mosses. The effect of elevation on nestedness was likely due to 
habitat diversity increasing with elevation (Kreft et al. 2008).

Nested distribution may also occur if species are affiliated 
with different habitats and these habitats show a nested distri-
bution across islands (Wright et al. 1998; Calmé & Desroch-
ers 1999; Tiselius 2016). In the Zhoushan Archipelago, there 
existed a high level of nestedness for habitat types across dif-
ferent islands, which was consistent with the Cook & Quinn 
(1995) view that habitat nestedness would be stronger within 
continental systems, because continental archipelagos tend to 
exhibit a larger range of island sizes and thus may also exhibit 
a wider range of hydrologic environments. Meyer & Kalko 

Table 4. — Spearman correlations between the ranks of the islands in the maxi-
mally packed matrix and those of habitat types of 18 bryophyte categories in 
the Zhoushan Archipelago.

Categories Correlation
Number of 

islands
Significance 

level
Total bryophytes 0.919 66 < 0.001
Total mosses 0.924 66 < 0.001
Liverworts 0.699 47 < 0.001
Acrocarpous mosses 0.906 66 < 0.001
Pleurocarpous mosses 0.761 43 < 0.001
Brachytheciaceae 0.635 41 < 0.001
Bryaceae 0.735 62 < 0.001
Fissidentaceae 0.643 44 < 0.001
Pottiaceae 0.847 64 < 0.001
Funariaceae 0.478 48 < 0.001
Hypnaceae 0.792 35 < 0.001
Leucobryaceae 0.565 32 < 0.001
Thuidiaceae 0.641 41 < 0.001
Mniaceae 0.538 33 < 0.002
Lejeuneaceae 0.397 34 < 0.05
Polytrichaceae 0.417 28 < 0.05
Lophocoleaceae 0.231 34 < 0.2
Leskaceae 0.218 32 < 0.5

Table 5. — Partial spearman coefficients of nestedness with area and elevation 
for 18 categories of bryophytes on the Zhoushan Archipelago. Note: *, P < 0.05.

Categories (number of islands 
with focal taxa) Area Elevation
Bryophytes (66) 0.339* 0.274*
Mosses (66) 0.362* 0.271*
Liverworts (47) 0.159 0.228
Acrocarpousmosses (66) 0.344* 0.247
Pleurocarpous mosses (43) 0.226 0.322*
Pottiaceae (64) 0.343* 0.17
Bryaceae (62) 0.355* 0.053
Brachytheciaceae (41) 0.258 0.067
Hypnaceae (35) 0.376* 0.223
Funariaceae (45) 0.065 0.045
Thuidiaceae (41) 0.448* 0.002
Polytrichaceae (28) 0.391* –0.013
Leucobryaceae (32) 0.439* 0.048
Fissidentaceae (45) 0.453* –0.104
Leskaceae (32) 0.158 0.0172
Mniaceae (33) 0.359* –0.005
Lejeuneaceae (33) 0.001 0.082
Lophocoleaceae (34) 0.356* –0.064
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(2008) pointed out that nested habitat distribution may 
produce nested subsets if many species are habitat specialists. 
Bryophytes are more sensitive to habitats than vascular plants, 
and many are habitat specialists (Goffinet & Shaw 2000). 
Therefore, significantly positive Spearman correlations were 
detected between the ranks of the islands in the maximally 
packed matrix of species distribution and those of habitat 
types for almost all eighteen bryophyte categories. The nested 
distribution of bryophytes in our system was closely related 
to the nested habitats. Habitat nestedness hypothesis thus 
well explained the formation of nested distribution of bryo-
phytes in the Zhoushan Archipelago. Hylander & Dynesius 
(2006) also found that the nested distribution of bryophytes 
in boreal streamside forests was mainly due to nested habi-
tats. Additionally, bryophyte colonization on the islands of 
the archipelago was strongly controlled by the availability of 
suitable habitats. For habitats that were scarce on the islands, 
there existed a strong filtering effect with sharply decreased 
presence probabilities for species associated with those habitats. 
In a northern Swedish archipelago, Tiselius (2016) also found 
that the nested distribution of bryophytes was attributed to 
the habitat filtering process.

In bryophytes, there existed an influential trade-off con-
cerning the production of a few, large spores or of many, 
small spores that control establishment rate vs. dispersal abil-
ity (Goffinet & Shaw 2000; Löbel & Rydin 2010). Species 
with larger spores have a higher probability to survive in a 
harsher habitat, thus possibly in a wider region, or occurred 
in more islands. Large spores have a low dispersal capacity 
but better chances of the successful establishment (Löbel & 
Rydin 2010). We thought that dispersal by spores was not 
a limiting factor for bryophytes to spread onto the whole 
study region considering a limited geographical region of the 
Zhoushan Archipelago and the long-distance dispersal capac-
ity of bryophytes by spores. Therefore, variations of spore size 
of bryophyte, which would result in differences in successful 
establishment rate, were possibly related to selective extinction 
(or more precisely, selective elimination). Based on our avail-
able data of spore size from 319 moss species, we found that 
the nested distribution of total mosses, acrocarpous mosses, 
and Pottiaceae was significantly influenced by spore size. That 
is to say, the nested distribution patterns of some bryophyte 
categories might partially attribute to selective elimination 

because of the difference in their survival capacities concern-
ing spore size. However, frequency of sporophyte production 
which could be (negatively) correlated with spore size and 
thus lead to unexpected results, and given that the spore sizes 
were mainly between 10 and 30 micrometers, i.e., really large 
spores were lacking, further works with larger sample cover-
ing more taxa are needed to elucidate the effect of spore size 
on nested distribution pattern of bryophytes.

The selective colonization hypothesis is that habitat isola-
tion would create nested subsets through a dispersal limita-
tion because species with different dispersal capacities vary in 
their ability to colonize distant sites (Patterson 1987). When 
species show different dispersal capacities, the process of dif-
ferential colonization across a gradient of island isolation 
will cause a nested pattern in which the more isolated islands 
have sampled only the subset of species with high dispersal 
capacity (Tiselius 2016). However, bryophytes have a long-
distance dispersal capacity, isolation exerted negligible effects 
on species richness of bryophytes in the continental islands 
(Patiño et al. 2013, 2014). In the same island system of the 
Zhoushan Archipelago, isolation also exerted little effect on 
butterfly assemblages (Xu et al. 2017). Therefore, selective 
colonization concerning dispersal capacity might not be a 
major factor in the formation of nested distribution patterns 
of bryophyte categories in our system. The high level of nest-
edness in bryophytes in our system is mainly attributed to a 
combination of nested habitat types and selective extinction 
(or selective elimination). Selective colonization concerning 
spore size played somewhat effects on the formation of nested-
ness for some bryophyte taxa in the Zhoushan Archipelago.

A high level of nestedness indicates that conservation focus 
should be on the most species-rich islands. However, there 
was a difference between a perfect nested system and a sta-
tistically significant nested system (Fischer & Lindenmayer 
2005). In the Zhoushan Archipelago, there existed a statisti-
cally significant nestedness for bryophytes, and bryophytes 
were richest in the Zhoushan Island (the largest island within 
the archipelago), with 232 species in total. However, among 
446 species in the Zhoushan Archipelago, nearly half of the 
species were absent from the largest island. The nestedness 
was far from a perfect level for bryophytes in the archipelago. 
The high proportion of species absent in the species-richest 
island also indicated that other islands should not be neglected 
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in the conservation of bryophytes. Additionally, the levels of 
nestedness varied among bryophyte families on continental 
islands. For families with lower levels of nestedness, such as 
Leskaceae, Fissidentaceae, and Funariaceae, their biological 
conservation should cover more islands than other families 
with high levels of nestedness.
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APPENDICES
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Appendix 7. — The number of islands whose observed species richness of focal bryophyte category lie outside ± one standard deviation of the expected species 
richness based on the null model proposed by Moore & Swihart (2007).
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Appendix 7. — Continuation.


