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ABSTRACT
The seasonal movements and organization of herds are essential features of
pastoral economies. Archaeologists have sought to identify herd mobility
using taxa frequencies, osteological measurements, and age profiles. Isotope
analysis of faunal tooth enamel and particularly intra-tooth profiles are
promising as independent lines of evidence for prehistoric mobility and
seasonality. Strontium isotopes (87Sr/86Sr) can provide excellent evidence of
geographic mobility. However, an understanding of physiological processes
which incorporate 87Sr/86Sr into tooth enamel is lacking. Based on studies of
strontium ecology, calcium metabolism, and amelogenesis, an a priori model
is presented of 87Sr/86Sr ratio profiles in teeth in which animal movement
and diet are independent variants. The results of the model show a close and
sensitive relationship between movement and observed 87Sr/86Sr values, but
also a significant effect due to differences in calcium content between
components of mixed diets. This presents the possibility that 87Sr/86Sr
profiles can be used in conjunction with Sr concentrations in enamel as
environmental and dietary evidence.

RÉSUMÉ
Visualiser la mobilité saisonnière : un modèle théorique à partir des profils
isotopiques du strontium dans les dents de caprinés.
Les mouvements saisonniers et l’organisation des troupeaux sont des éléments
essentiels des économies pastorales. Les archéologues ont cherché à identifier
la mobilité des troupeaux en utilisant les fréquences des taxons, les mesures
ostéologiques et les profils d’âge. L’analyse isotopique de l’émail dentaire des
animaux et particulièrement les profils intra-dentaires sont prometteurs
comme signes indépendants de la mobilité et de la saisonnalité en Préhistoire.
Les isotopes du strontium (87Sr/86Sr), notamment, peuvent constituer
d’excellents témoins d’une mobilité géographique. Cependant, une bonne
compréhension des processus physiologiques menant à l’incorporation du
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87Sr/86Sr dans l’émail dentaire fait toujours défaut. Basé sur des connaissances
de l’écologie du strontium, du métabolisme du calcium et de l’amélogénèse,
un modèle est proposé, prévoyant l’enregistrement des profils de 87Sr/86Sr
dans les dents, modèle dans lequel la mobilité de l’animal et son alimentation
sont des variantes indépendantes. Les résultats du modèle montrent une
relation étroite et sensible entre la mobilité et les valeurs de 87Sr/86Sr
observées, mais aussi un effet significatif des teneurs respectives en calcium
des différents composants d’une alimentation mixte. Le modèle suggère que
les profils de 87Sr/86Sr pourraient être utilisés en conjonction avec les
concentrations de Sr dans l’émail comme témoins environnementaux et
alimentaires.

RESUMEN
Visualizando la estacionalidad : Un experimento teórico con perfiles isotópicos de
estroncio en dientes de ovicaprinos.
La programación y organización del aprovisionamiento de los rebaños es un
rasgo esencial de las economías pastoriles. Los arqueólogos han tratado de
identificar la movilidad de los rebaños empleando frecuencia de taxa, medidas
osteológicas y perfiles de edad de los conjuntos. Los análisis isotópicos del
esmalte dental de la fauna, y particularmente perfiles intra-dentarios, son
promisorios como línea de evidencia independiente para la movilidad y
estacionalidad prehistórica. Los isótopos de estroncio (87Sr/86Sr) pueden
proveer un excelente proxy de movilidad geográfica. Pero todavía falta la
comprensión de los procesos fisiológicos de la incorporación del 87Sr/86Sr en
el esmalte dental. Basado en estudios de ecología del estroncio, metabolismo
del calcio y en la amelogénesis, se presenta un modelo a priori de perfiles de
índices 87Sr/86Sr en dientes de animales cuyo movimiento y dieta variaron
independientemente. Los resultados del modelo muestra una cercana y
sensitiva relación entre movimiento y los valores observados de 87Sr/86Sr,
pero adicionalmente un efecto significativo debido a diferencias en el
contenido de calcio entre componentes de las dietas mixtas. Esto plantea la
posibilidad de que los perfiles de 87Sr/86Sr puedan ser empleados como
proxies ambientales y dietarios en conjunto con las concentraciones de Sr en
el esmalte dentario.

MOTS CLÉS
Calcium,

strontium,
métabolisme,

isotope,
transhumance.

PALABRAS CLAVE
Calcio,

estroncio,
metabolismo,

isótopos,
trashumancia.

INTRODUCTION

Herd mobility plays a central role in pastoral
economies, both past and present. As a result,
elucidating the nature of herding strategies in
prehistoric societies has been a focus of much
archaeological research (e.g. Halstead 1981,
1996; Geddes 1983, Levy 1983, Cribb 1991,
Bar-Yosef & Khazanov 1992, Bernbeck 1992,
Köhler-Rollefson 1992, Greenfield 1999,
Martin 1999, Arnold & Greenfield 2004). How
flocks were provisioned in prehistory has impor-

tant implications for basic social structures.
Ethnographic studies document relationships
between different herding strategies and the orga-
nization of labor and production, group interac-
tion and sharing, and patterns in resource
exploitation and residential mobility (Bates 1973,
Bates & Lees 1977, Hole 1978, Ingold 1986,
Casimir 1988, 1992; Agrawal 1999,
Salzman 2002). Addressing these issues, however,
based on species representation, mortality pro-
files, and other osteological data has been
difficult, as they cannot fully address the seasonal



and geographic character of herd management
(cf. Halstead 2005). Isotope measurements of
faunal tooth enamel have been used to adduce
evidence for palaeoenvironments, diet and
migration in prehistoric animal populations
(Delgado Huertas et al. 1995, Gannes et al. 1998,
Hobson 1999, Sponheimer & Lee-Thorp 1999,
Schoeninger et al. 2000, Zazzo et al. 2000,
Hoppe 2004, Hoppe et al. 2006). Specifically,
due to the time-progressive nature of enamel for-
mation (amelogenesis), analysis of intra-tooth
enamel samples allows reconstruction of seasonal
and annual changes during the life of the indivi-
dual (Hoppe et al. 1999, Wiedemann et al. 1999,
Balasse et al. 2000, Bocherens et al. 2001,
Balasse 2002, 2003; Balasse et al. 2002, Balasse et
al. 2003, Sponheimer et al. 2006). Isotope ana-
lyses provide an advantageous perspective as
independent proxies of these aspects of an ani-
mal’s life. Isotope values in teeth do not, how-
ever, necessarily bear an obvious or simple
relationship to the animal’s environment or beha-
vior. In an effort to discern processes by which
the isotopes of particular elements become incor-
porated into enamel, research using carbon
(δ13C) and oxygen (δ18O) isotopes has investiga-
ted sources of environmental variation, and how
these are transformed by mammalian metabolism
and amelogenesis into biogenic signatures (e.g.
Ambrose & Norr 1993, Bryant et al. 1996,
Fricke & O’Neil 1996, Kohn et al. 1996, Gannes
del Rio et al. 1998, Lee-Thorp 2002, Passey &
Cerling 2002).
Unlike lighter isotopes, variability in strontium
isotope ratios (87Sr/86Sr) arises from geochemical
factors. Thus it is particularly well-suited to
investigate the geographic extent of herding stra-
tegies such as the emergence of transhumant pas-
toralism. Strontium isotope ratios have been
usefully applied to a variety of archaeological
situations to investigate human residential mobi-
lity and migration, as well as to the migration and
habitat of animal populations (Vogel et al. 1990,
Hoppe, Koch et al. 1999, Price et al. 2000,
Balasse, Ambrose et al. 2002, Schweissing &
Grupe 2003, Hodell et al. 2004, Hoppe 2004,
Knudson et al. 2005, Price et al. 2006) .

Biological processes do not significantly fractio-
nate strontium isotopes, and diagenesis does not
seem to have a substantial effect on biogenic
values in dental enamel (Budd et al. 2000, Hoppe
et al. 2003, Dauphin & Williams 2004,
Sponheimer & Lee-Thorp 2006). A natural pre-
sumption therefore has been that values observed
in tooth enamel faithfully record geography — as
it is expressed in geological variability in space.
But the scale of sensitivity at which this is physio-
logically expressed is poorly understood. How
much will dietary values be attenuated and/or
averaged during amelogenesis? Strontium substi-
tutes for calcium in skeletal hydroxyapatite, and
strontium concentrations in the body depend on
dietary calcium (Comar 1963), which is under
tight biological control. Mixing of strontium iso-
topes has been considered in the context of bone
turnover and Sr residence time (e.g. Beard &
Johnson 2000, Schweissing & Grupe 2003,
Bentley 2006), but unlike bone, enamel does not
remodel once formed. An understanding of spe-
cific physiological processes is critical if sequen-
tial samples of tooth enamel from an animal are
to be translated into mobility patterns, particu-
larly at small scales.
As a step in this direction this paper considers an
a priori model of strontium isotope incorporation
into ovicaprine tooth enamel as a first step to illu-
minate how physiology, environment, diet and
movement may affect observed 87Sr/86Sr isotope
ratios. The goal of the model is to explore the
relationship between animal life history and mea-
sured strontium isotope profiles, as well as laying
the groundwork to refine inferences possible
from these data.

MODELING STRONTIUM ISOTOPES
FROM DIET

The model consists of five elements (Fig. 1). It is
based in an idealized landscape divided by a
gradient between two arbitrary strontium isotope
ratios, A and B, in which a hypothetical sheep
travels in specific patterns over a time period
equivalent to tooth formation (Fig. 2) — in this
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study, 425 days for the permanent third molar
(M3). To investigate the effect of diet, different
forage is available in each region. Four pairs of
forage combinations were used, covering a spec-
trum of calcium content (NRC 1985, Table 1).
A compartmental model of calcium (Ca) metabo-
lism (Fig. 3), based on data from veterinary
studies, was developed to generate fractional
contribution to plasma Ca from each region ite-
rated daily for the movement cycle. The amount
of biologically available strontium is assumed to
be the same across the entire landscape, making
the amount of strontium incorporated through
the diet a function of forage calcium content and
Sr/Ca ratio for the part of the plant consumed
(Elias et al. 1982). This allowed calculation of
intermediate Sr isotope values. Lastly, time was
converted to distance along the crown of the
tooth, and following the technique described by
Passey and Cerling (2002) to mathematically
estimate attenuation during amelogenesis, model
enamel Sr isotope profiles were created. In these
modeled profiles movement and diet could be
independently varied. The results show, within
the constraints of the model, a close relationship
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Idealized landscape:

mobility pattern

between regions A & B

(425 days)

1

Fractional contribution

from region A & B

to plasma calcium

composition

(metabolism model)

2

Diet:

change forage composition

between region A & B

(calcium content)

3

Convert calcium composition

to Sr

using Sr/Ca and 87Sr/86Sr ratio

assigned to A & B

4

5

Tooth formation:

linear growth rate to 40mm

isotope signal attentuation

(Passey & Cerling [2002])

FIG. 1. – Flowchart summarizing the components of the a priori
model.

A BA B

Direct Meander

FIG. 2. — Idealized landscape and indicative movement patterns. Shaded gradient represents 87Sr/86Sr isotope change from
region A to B.



in time between dietary fluctuations and stron-
tium isotope profiles that would be measured in
enamel. Biases resulting from diet-dependent
effects and parameters of amelogenesis signifi-
cantly affect the profiles, however. The implica-
tions these data have for the application of
strontium isotope ratios to the investigation of
prehistoric herding strategies will be considered.
Following the numbered boxes in Figure 1, the
subsequent sections describe each portion of the
model in greater detail.

NO.1. IDEALIZED LANDSCAPE: CHARACTERISTICS,
MOVEMENT AND FORAGE

A hypothetical landscape was created consisting
of two regions with distinct, arbitrary strontium

isotope ratios. The scenario presented here arbi-
trarily assigns a 87Sr/86Sr value of 0.7080 to
region A and 0.7070 to region B; this modest
difference of 0.001 is a good starting point as a
reasonable upper boundary for intra-regional
variation (cf. Price et al. 1998, Price et al. 2002,
Bentley & Knipper 2005a). Although each
region has a distinct 87Sr/86Sr value, the boun-
dary between them is not; it bisects the landscape
and grades over some distance. It is indistinct and
the 87Sr/86Sr ratio will change gradually as it is
crossed. To make this hypothetical situation less
abstract, one can imagine a small village in region
A from which a herd moves toward the moun-
tains in region B, as in Fig. 2.
The third permanent molar (M3) was chosen as
the tooth modeled in the study. Therefore its
formation time determines the period over
which the model is evaluated. Based on eruption
times (Weinrab & Sharav 1964) and radiogra-
phic study (Milhaud & Nezit 1991), a reaso-
nable estimate is that this tooth forms beginning
at 10 months of age and is completely formed
and in occlusion by 24 months, or approxima-
tely 425 days. Two types of schedules were
investigated, so-called ‘direct’ and ‘meander’
(Fig. 2) to encapsulate differences in movement
behavior. The ‘direct’ pattern — analogous to a
seasonal transhumant pattern — is one in which
the sheep move from region A to region B over a
21-day travel period. The sheep stay in region B
for 120 days before returning to region A in a
similar fashion. Characteristic of this pattern is
that movement is roughly perpendicular to the
isotope boundary. Thus, the herd is moving in
the most direct manner across this boundary and
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TABLE 1. – Four forage pairs available forage in region A and B used with shift in Ca content indicated.

Change in forage Ca Region
content from A to B A B

lower → higher barley grain clover, fresh mid-bloom

barley hay intermountain meadow
approx. 1:1 clover hay alfalfa hay

higher → lower barley grain intermountain meadow
+ vetch hay

Slowly Exchanging Pool

Quickly Exchanging Pool

Serum

Bone

G.I.T.

MilkUrine

P

B

Ca2+

FIG. 3. — Schematic diagram of Ca compartments and flow as
used in the metabolism model (No. 2 from Figure 1).



the shift in isotope values from region A to
region B will be the most abrupt. This contrasts
with a ‘meander’ schedule, in which movement
is both across and along the boundary. Several
stops can be made after the herd initially moves
from region A, some of them firmly in region B
and some to a greater or lesser degree in
region A. This schedule type, depending on
its periodicity, could perhaps be analogous
to a horizontal transhumance pattern
(Bernbeck 1992) but other alternatives are pos-
sible. Two variants in the periodicity of the
“meander” schedule were examined (Fig. 4). The
variant with only one period fully in region B is
somewhat similar to the ‘direct’ pattern but with
more gradual movement across the isotope
boundary. Within the metabolism model (dis-
cussed below), each of these three cases of mobi-
lity were represented by a mathematical
expression, and the gradient expressed by the
fractional contribution of calcium from each
region.
Herd mobility strategies are designed to take
advantage of ephemeral, seasonal forage
resources. Such geographic movement is bound
to include different plant communities and soil
conditions, which may affect both the amount
of calcium and strontium consumed. Calcium
concentrations can vary widely between diffe-
rent plants, and parts of plants, and regions
(NRC 1958, NRC 1985, Khan et al. 2004).
Therefore, in addition to an isotope value, each
region has a distinct forage. The suite of forage
chosen represents a range of plant parts and Ca
contents (Table 2). Four pairs of forage were

investigated, with the change in Ca content
from A to B being either lower to higher, of
equivalent Ca content, or higher to lower
(Table 1).

NO. 2. CALCIUM METABOLISM IN SHEEP:
CHARACTERISTICS AND COMPARTMENT MODEL

Interest in the nature of nutritional dynamics in
domestic stock (e.g. Hacker & Ternouth 1987)
has generated a substantial body of veterinary
research on Ca metabolism in sheep. Reflecting
its crucial biological functions, Ca is tightly regu-
lated (Moodie 1975, Underwood & Suttle 1999)
and its absorption, retention and excretion in
sheep have been related to a variety of factors,
such as: pregnancy, lactation, age, dietary phos-
phorus, vitamin D, protein and total food intake
(Braithwaite et al. 1969, Braithwaite &
Riazuddin 1971, Braithwaite 1982, 1983a,
1983b; Field et al. 1985, Chrisp et al. 1989,
Fredeen 1990, Rajaratne et al. 1990, Liesegang &
Risteli 2005). Homeostasis in sheep is maintai-
ned either by adjustment in the absorption of Ca
from the gastrointestinal tract (GIT) or by
resorption of bone (Braithwaite 1974, Fredeen &
van Kessel 1990), so it is best “…from a physio-
logical and nutritional standpoint to consider
what proportion of Ca requirement will be furni-
shed by the diet and the skeleton at different
levels of Ca demand […]” (Chrisp, Sykes et
al. 1989: 54-5). Efficiency of absorption from the
GIT decreases with age, and in mature animals is
independent of dietary intake (Braithwaite &
Riazuddin 1971). It has been shown that during
pregnancy and lactation, bone resorption
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TABLE 2. – Calcium content (% as fed, not dry basis) for all forages included in this study (data from NRC 1985). Sr/Ca ratios calcula-
ted from Elias et al. (1982, table 2). Value for ‘seeds’ used for all except clover, where Sr/Ca for ‘leaves’ was used.

Forage Ca (% mass, as-fed) Sr/Ca

Alfalfa hay (Medicago sativa) 1.27
Barley hay (Hordeum vulgare) 0.20 0.014575
Barley grain 0.04

Clover, fresh mid-bloom (Trifolium pretense) 0.46 0.014866

Clover hay 1.24
Intermountain meadow plants 0.58 0.014575
Vetch hay (Vicia spp.) 1.05



increases regardless of dietary Ca content
(Braithwaite 1983a, Fredeen 1990). These stu-
dies form a basis with which to model flux in the
plasma Ca pool available for amelogenesis.
In order to physiologically quantify the flow of
Ca in animals, researchers have used isotope tra-
cer techniques coupled with compartment analy-
sis. Animal metabolism can be considered a
collection of pools, or ‘compartments’, composed
of identical particles in exchange with each other.
A compartment is therefore a kinetically distinct
pool in the body which tends to remain a
constant size while undergoing turnover, i.e.
equal rates of input and output (see e.g. Takagi &
Block 1991). Compartment analysis assumes that
these pools can be identified using isotope tracers
and described by exponential equations (Aubert
et al. 1963; Shipley & Clark 1972). The flows
between body pools, then, can be described by
relatively simple differential equations and their
parameters, incorporating mass balance calcula-
tions. The kinetic model of Ca metabolism
used here was constructed using software
(ModelMaker, Cherwell Scientific) capable of
easily calculating the multiple flows in a physiolo-
gical system. The model necessarily assumes a
steady-state metabolism over time, although the
Ca demand of an animal changes throughout its
life (Underwood & Suttle 1999).
The studies cited above indicate the most signifi-
cant physiological effects on calcium metabolism
are pregnancy/lactation and age. Parameters of
calcium metabolism in four physiological ‘states’
were used, based on metabolism data for three-
year old lactating and non-lactating ewes
(Braithwaite, Glascock et al. 1969), and 6-month
and 16-month-old wethers (Braithwaite &
Riazuddin 1971). The structure of the
metabolism simulation followed Braithwaite
et al. ’s (1969: 829-30) inference of a
quickly exchangeable pool of calcium (P)
— which is partly composed of serum plasma Ca
— and a slowly exchangeable pool (B). It is
important to recognize, however, that this pool
does not represent the Ca pool of bone itself, but
one intermediate between bone sensu stricto, and
the more quickly exchanging P (Fig. 3). A reaso-

nable estimate is 99% of a sheep’s total Ca is sto-
red in bone mineral (Braithwaite 1975: 322;
MacFarlane 1975, Moodie 1975) which
exchanges with this slow pool (B). The behavior
of the quick pool (P) in each of the four physiolo-
gical ‘state’ cases is not significantly different
(Figs 5 and 6), but there are differences in the
behavior of the slow pool (B) between each case.
Because the behavior of the quick pool (P) is
similar — this is considered to be the pool from
which Ca for amelogenesis is drawn — diffe-
rences between these physiological cases are not
further considered in the construction of
the model. Further work should, however,
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FIG. 4. – Variations in ‘meander’ movement schedule used,
shown as fraction of contribution of region A to plasma Ca over
tooth formation time.



particularly consider the effect of large rates of
bone resorption, which makes up Ca deficits in
late-term and early lactating ewes (Braithwaite
1983a).
Dietary input is modeled as a fraction of Ca from
region A through time according to the idealized
movement schedules described above (i.e. 100%
Ca from region A equal 1 and 100% Ca from
region B equal 0). The effect on the quickly

exchangeable pool (P) over 425 days was then
tabulated in a spreadsheet. This produced values
for each movement schedule and metabolic state
(lactating, mature, etc.) over the formation time
of the tooth. These data were then converted into
effective or composite strontium isotope values
by applying each of the dietary forage pairs and
the chosen ratios for region A and B as described
in the next section.
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FIG. 5. – Output of Ca metabolism simulation for the ‘direct’ movement pattern of four physiological ‘states’ (clockwise from upper
left: non-lactating and lactating 3 yr-old ewe [parameter data from Braithwaite et al. 1969, Table 3]; 16 mo. and 6 mo. old wether
[Braithwaite and Riazuddin 1971, Table 3]). Solid line, P, represents fluctuations in serum Ca over time based on changes in diet
input source (prop. of region A, dotted line). Dashed line represents changes in slow pool (B) values.



NOS. 3 AND 4. DIET, BIOPURIFICATION

OF CALCIUM, AND STRONTIUM ISOTOPES

In order to investigate the behavior of strontium
isotopes in sheep, a quantitative model of
calcium metabolism is a necessary starting point.
Calcium is a crucial component in skeletal tissue.
Strontium behaves in a chemically similar
fashion, and is nearly ubiquitous in the environ-
ment. More specifically, it can substitute for Ca
in skeletal hydroxyapatite. Early investigation of

the effect of nuclear fallout led to the recognition
of biological discrimination against strontium
progressively through the food chain from the
soil (e.g. Comar 1963), or ‘biopurification’ of
calcium (Elias, Hirao et al. 1982). In general, this
translates into a trophic-level effect in the Sr/Ca
ratio, but critically, “[within] normal dietary
ranges the stable strontium to calcium ratio…will
be directly related to the ratio that exists in the
diet” (Comar & Wasserman 1964: 530) in a
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FIG. 6. – Output of Ca metabolism simulation for one and three-stop ‘meander’ movement pattern (clockwise from upper left: non-
lactating and lactating 3yr-old ewe; three-stop cyclical pattern for 16 mo. wether and one-stop pattern for non-lactating ewe), as in
Figure 5.



given biological system. This characteristic discri-
mination factor against ingested strontium may
be constant, but this applies to the whole diet,
and in mixed diets both the strontium and cal-
cium content (and Sr/Ca ratio) of all compo-
nents in the diet must be taken into account. In
this experiment, the strontium content was held
constant, i.e. it’s biological representation only
changes as a function of changing dietary Ca
—not as function of changing Sr availability
(cf. Capo et al. 1998, Crout et al. 1998, Price,
Burton et al. 2002). Since dietary Ca intake can
vary over orders of magnitude, the amount of
strontium which enters the body pool can simi-
larly vary (cf. Ericson 1989). Different species of
plants, and parts of plants, will display different
Sr/Ca in the same environment, for example
(Bowen & Dymond 1955, Vose & Koontz 1959,

Elias, Hirao et al. 1982, Runia 1987). This
linkage between dietary calcium and absorbed
strontium can create a strongly non-linear rela-
tionship in mixed diets — either between com-
ponent representation, or as in this experiment
between geographic source — particularly when
calcium content differs greatly between dietary
components (Burton & Wright 1995). The
Sr/Ca ratio of a range of dietary combinations
can be strongly non-linear, and will only be linear
if the Ca content of the mixture is equivalent
(Fig. 7 and Table 1).
Although the amount of Sr present in the diet is
affected by biopurification, its isotopes are not.
In particular, the ratio 87Sr/86Sr depends on the
geochemical composition and age of a particular
geologic formation, and the small relative diffe-
rence in the masses between the isotopes leaves
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FIG. 7. – Change in 87Sr/86Sr isotope values between forage pairs as increasing proportion of Ca from region B in the diet.



them unaffected by biological processes (i.e. does
not fractionate). Their geographic variability
stems from the origins and geochemistry of parti-
cular rock formations. Briefly, 87Sr is a stable,
radiogenic product of the slow decay of rubi-
dium-87, whereas 86Sr is stable. So the 87Sr/86Sr
ratio depends on the Rb/Sr ratio in a given rock
and only varies over geological time scales.
Generally, the geochemical behavior of Rb and Sr
produces an uneven geographic distribution of
rocks with potential for higher or lower 87Sr/86Sr
(Faure 1986, Dickin 1995). Strontium isotopes
have thus been used in archaeology and palaeoe-
cology as a proxy for migration and mobility
(Hoppe, Koch et al. 1999, Balasse, Ambrose et
al. 2002, Hoppe 2004, Bentley 2006).
Since the numerical values of data from the Ca
metabolism step of the model ranged from zero
to one (i.e. from Ca from region B to that from
region A), it was a simple matter in a spreadsheet
to calculate the proportion of dietary Ca from
each region and weight these based on each of the
forage pairs chosen by Ca content (Table 2), spe-
cific Sr/Ca ratios (Elias, Hirao et al. 1982,
Runia 1987) and strontium isotope value for
each region using the same equation to produce
Figure 6 iterated over each daily step. The
equation generates composite 87Sr/86Sr ratios by
summing the Ca-weighted contribution of each
forage:

where 87Sr/86SrX is the strontium isotope ratio of
the respective region, Ca.frac.A the fractional
contribution to plasma Ca from region A (from
metabolism model), (1-Ca.frac.A) the contribu-
tion of region B, %CaX is the percent as-fed
content from Table 2, and Sr/Ca values for plant
parts calculated using data from Elias et al.
(1982).
The output of this equation represents the equili-
brium plasma strontium isotope value for each
step of the model. It carries with it all of the
assumptions of the model made to this point, and
the inability of the model to account for inter-

individual variability. More specifically, the
model so far has assumed: a steady-state metabo-
lism (i.e. static Ca requirements); well-mixed
body pools; that linear kinetics apply to the meta-
bolic system; that nutritional and physiological
factors other than those considered here have a
minor influence on Ca flux; and that the reten-
tion of strontium is similar and related to the cal-
cium composition of diet. This last assumption is
consistent with the observations of Goldman et
al. (1965) and Hogue et al. (1961).

NO. 5. AMELOGENESIS

For the purposes of the study, maximum enamel
height of the permanent M3 is set at 40 mm.
Having obtained a day-by-day model of equili-
brium serum 87Sr/86Sr values from the previous
sections, these are then converted into a isotope
profile along the growth axis of the tooth. First,
an estimated rate of enamel growth in sheep is
determined as a constant over the period of
growth (length divided by formation time, see
No.1 above). Mammalian enamel is laid down
appositionally from the crown apex toward the
cervical margin, and periodic structures exist in
the enamel (Boyde 1989); but of particular inter-
est are the striae of Retzius. These incremental
structures are evenly spaced in imbricational
enamel — such as that composing sheep enamel
(Hillson 2005) — and at an oblique angle to the
direction of the enamel prisms themselves so
that they can be considered growth lines
(Risnes 1998: 343; Smith 2006). The cervical
direction of enamel growth is reflected in a gra-
dient of cellular activity, and a model of this sug-
gests these are isochronous surfaces in enamel
formation (Moss-Salentijn et al. 1997: 20;
Fig. 8). This allows a first approximation of tooth
formation as appositional growth of a particular
daily width. This provides an important process
in the model to convert calculated daily isotope
values into positions on a tooth. It is important
to note this linear rate is the distance that the iso-
chronous surface advances in a day, not the
growth of enamel prisms themselves.
In addition to the appositional characteristics of
enamel growth, the process of enamel formation
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proceeds in steps, with the initial secretion of
enamel matrix by ameloblasts only containing
20-30% mineral. This is followed by a phase of
maturation in which the enamel mineral (inorga-
nic) content is dramatically increased to approxi-
mately 96-98% by weight (Boyde 1989,
Smith 1998). It also appears that the maturation
phase takes longer than the secretion phase
(Suga 1982, Smith 1998). Passey and Cerling
(2002) present a mathematical model of this pro-
cess of enamel formation, based on observations
of ungulate teeth. Because their model mimics
the phased nature of enamel mineralization, it
forms the final piece of the model. Each daily iso-
tope value is assumed to be one unit of width, as
calculated above, of appositional enamel with a
mineral content of 25% (in this case, the daily
87Sr/86Sr value). The remaining mineral content
of the layer is calculated as an average of a speci-
fied number of preceding layers. This number
was determined by a calculated estimate of the
maturation length of a sheep tooth (Suga 1982).
The maturation length of sheep teeth has not
been determined empirically, and measurements
from microradiographs presented by Suga (1982)
can only be indicative. Two values were exami-
ned in the experiment, ca. 3 mm and ca. 9 mm.

The sum of these values becomes the full mineral
content of each layer. The resulting profiles show
variation in strontium isotope values for both the
movement pattern and forage combination inves-
tigated between regions A and B. Comparison of
dietary input and the generated enamel profiles
for the shorter maturation length (Fig. 9, left)
shows that the input dietary signal is not signifi-
cantly shifted along the tooth, indicating good
correspondence between distance and period in
the animal’s life. A longer maturation length
significantly affects observed enamel isotope
signal, largely obscuring patterning in the 3-stop
meander movement.

RESULTS AND DISCUSSION:
MODELED ISOTOPE PROFILES

The model isotope profiles are presented in
Figures 10A-C. The results for each possible
forage combination are shown for three different
movement schedules. The difference between
individual curves in a particular schedule (e.g.
Fig. 10A) is only due to changes in calcium
content of forage. The solid black profile indi-
cates forage with equivalent Ca content between
region A and B. From bottom to top, the profiles
represent a trend of increasing Ca content in
region A forage with attendant decrease in forage
from region B (see Table 1).
Several observations are possible from these
results:
a. — Relatively fast turnover of plasma Ca per-
mits high sensitivity to changes in dietary Sr/Ca
and thus changes in 87Sr/86Sr. This is consistent
with a relatively small serum Ca concentration
and thus proportionally high daily Ca flux
through the system. A reasonable estimate of
serum Ca concentration is 6.5 mg/kg of body
weight (MacFarlane 1975, Moodie 1975, Yokus
et al. 2004). From the metabolic parameters used
here, this is approximately 10-16% of the total
quickly exchangeable Ca pool (P), and only a
about a third of the daily Ca loss through the
intestine (Braithwaite, Glascock et al. 1969,
Braithwaite & Riazuddin 1971).
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FIG. 8. – Ontogenetic model of enamel development (redrawn
from Moss-Salentijn et al. [1997], fig. 6). Black rectangles indi-
cate lateral planes from enamel surface to enamel-dentine junc-
tion (EDJ), and gray circles indicate position of ameloblasts at
various times (T0, T1, and T2). The dotted black arrows indicate
isochronous planes in developing enamel.



Visualizing the Seasonal Round: A theoretical experiment with strontium isotope profiles in ovicaprine teeth

119ANTHROPOZOOLOGICA • 2007 • 42 (2)

Maturation length
ca. 3mm

Maturation length
ca. 9mm

FIG. 9. – Overlay of dietary input (dotted) with modeled enamel 87Sr/86Sr profiles for cyclical movement of 16 mo. old wether for three
forage pairs. Attenuation increases with increasing difference in Ca content in mixed diets. Left column, ca. 3 mm maturation length;
right column, ca. 9mm maturation length.
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(A) direct movt.
to region B

(B) meander movt.
1-stop in region B

(C) meander movt.
3-stops in region B

FIG. 10. – Results. Model 87Sr/86Sr enamel profiles for all forage pairs in 16 mo old wether (using ca. 3mm maturation length). (A)
‘direct’ movement; (B) 3-period ‘meander’ movement; and (C) 1-period ‘meander’ movement.



b. — Although metabolism itself does not mask
dietary fluctuations, changes in dietary Ca
concentration with similar Sr/Ca as used here
have a marked effect on the nature and shape of
the transitions (Fig. 9, dotted lines, and Fig. 10).
That is, foods higher in Sr — resulting either
from increased soil availability in Sr (Menzel &
Heald 1959) or dietary Ca — will mask the
contribution of foods with lower mineral
content, as observed by Ericson (1989).
Comparing forage pairs results in both meander
and direct movement patterns (Fig. 10 and cf.
Table 2) shows broadening of the dietary isotope
curves can attenuate the values represented in
geographic movement (cf. Burton & Wright
1995), and thus not mirror geological (‘pure’ bio-
logically available) 87Sr/86Sr values. In particular,
note differences between profiles with large diffe-
rences in Ca content between region A and B
(e.g. uppermost and lowermost curves in
Fig. 10C). This carries the implication that linear
mixing of strontium isotopes must reflect equal
dietary weight from component isotope sources
(cf. Montgomery et al. 2007).
c. — The observed enamel values are also stron-
gly affected by the maturation length of the
tooth, potentially masking all structure of move-
ment, as in the right column of Fig. 9 or the
lower panel of Fig. 12. Interestingly, it is the
periodicity and amplitude of changes in dietary
isotope values that is the critical variable.
Figure 11 shows a simulated seasonal change in
isotope values (e.g. oxygen) and its predicted
enamel profile for a ca. 9 mm maturation length.
As observed by Kohn (2004), the shape of this
type of change is preserved regardless of how
much it is attenuated by physiology. This may
not be the case, however, for strontium isotopes
(Figs 9 and 12). Because strontium isotopes ulti-
mately vary biologically based on mobility (i.e.
geology/geography), patterns in isotope shifts
that interest archaeologists result from anthropo-
genic — and potentially irregular — mobility
patterns in herded animals. Herding strategies
similar to the direct pattern used here (if only in
isotope shift) may be more clearly observable in
sheep teeth than one in which isotope values,

weighted by diet, shift in varying amplitudes and
frequencies within the period of enamel forma-
tion. A shorter maturation length in sheep teeth
will more closely track such irregular isotope
shifts.
Strontium isotopes can serve as a useful proxy for
prehistoric animal mobility, as archaeological stu-
dies have suggested (Hoppe, Koch et al. 1999,
Balasse, Ambrose et al. 2002, Bentley &
Knipper 2005b). But its sensitivity will be condi-
tioned by biological processes — amelogenesis
and changing Sr/Ca in the whole diet — as well
as the particular herding strategies employed by
ancient herders. Close temporal correspondence
between diet and plasma 87Sr/86Sr isotope values
suggests that more precise understanding of
sheep amelogenesis (i.e. maturation length) may
allow more precise reconstruction of geographic
mobility (cf. Passey et al. 2005). And the effect of
dietary Sr/Ca flux presents both a problem and
an opportunity. From an interpretive point of
view, the possibility that an isotope profile has
undergone significant attenuation, not reflecting
the full range of geographic values, may obscure
and confound placing animal mobility in a
geographic context. The two uppermost curves
in Figure 12, taken individually, might well
be interpreted as two different patterns of
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FIG. 11. – Comparison of simulated seasonally periodic dietary
isotope signal ( e.g. δ18O, dotted) and predicted enamel profile
(solid) using ca. 9 mm maturation length. Shift in enamel signal
is less pronounced for ca. 3 mm length (not shown).



movement. This effect is less pronounced in all
cases arising from diet or amelogenesis in the
direct movement pattern (compare Fig. 10A and
lowermost quartet in Fig. 12), indicating that
broadly seasonal transhumance between summer
and winter pastures is faithfully reflected in
87Sr/86Sr enamel profiles Given the procedure
generally used to obtain intra-tooth samples — in
which an individual sample is 1-2 mm wide
(Passey & Cerling 2002, Balasse 2003) — it is
unlikely that the patterns observed here would be
obscured by sampling itself.
Such results underscore the need for a clear
understanding of regional variation in 87Sr/86Sr,
calcium content and Sr/Ca in plant communi-
ties. A variety of processes (fluvial, eolian, and
weathering) all may effect the pattern of 87Sr/86Sr
with a given geological region, and empirical
observation of regional values is necessary (Price,
Burton et al. 2002, Bentley 2006). Thus, animals
may not necessarily encounter sharp 87Sr/86Sr
boundaries in their peregrinations, and the biolo-
gically available strontium may display a different
value than that predicted by geology alone (Price
& Gestsdóttir 2006). Measurement of strontium
concentrations in enamel profiles in addition to
87Sr/86Sr presents an opportunity implicit in
Ericson’s (1989: 255) identification of potential
masking of isotope values by high Sr foods. The
results of this study suggest that analysis of Sr
concentrations and 87Sr/86Sr from enamel pro-
files could be used in concert as ecological and
dietary proxies, given consideration of regional
edaphic conditions and trace element characteris-
tics of possible plant communities.

CONCLUSION

Specific mobility strategies utilized by prehistoric
people form an important aspect of understan-
ding past social and economic dynamics. Intra-
tooth isotope analysis shows increasing potential
to elucidate and reconstruct these strategies at the
level of the individual animal. Strontium isotope
analysis is exceptionally suited to consideration of
lifetime geographic movement, as its environ-
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FIG. 12. – Similar profiles as in Figure 10, but separated and
arranged to show difference between forage pairs with greatest
difference in Ca content (top pair in each section). Top: 3-stop
meander pattern using shorter maturation length; middle: same
as above except longer maturation length; bottom: direct pat-
tern using longer maturation length.



mental variability stems from the geochemistry of
regional bedrock. Unlike light isotopes, however,
there has been little consideration of potential
physiologically-based influences on isotope values
in tooth enamel. As a initial foray to consider this
topic, this paper presents an a priori physiological
model of strontium isotopes in ovicaprine tooth
enamel as a theoretical experiment considering
plausible interactions between an animal’s diet,
metabolism, and ultimately enamel formation.
The results show, as first approximations, that
there can be a close and sensitive relationship bet-
ween calcium metabolism, dietary Sr/Ca ratios,
and modeled enamel isotope values. Both diet
and amelogenesis strongly influence the nature of
the profiles which depend on the periodicity and
magnitude of any isotope gradient, the magni-
tude of shifts in dietary Ca, and the maturation
length along a tooth. Although this may present
some interpretive difficulties, a better understan-
ding of these factors opens the possibility of using
enamel Sr concentrations jointly with 87Sr/86Sr
in enamel profiles as ecological and dietary
proxies. To pursue these aims, further research
should consider geographic, environmental
distribution and variability in biologically avai-
lable strontium, both from a trace element and
isotope perspective. Refinement of the metabolic
model can be made with further consideration of
the effect of periods of high Ca demand (pre-
gnancy, lactation) when bone resorption may be
at its highest, and physiological studies for empi-
rical comparison to model parameters. Finally,
clarification of specific parameters of amelogene-
sis in ovicaprines presents the opportunity to
reconstruct seasonal geographic mobility, even if
the patterns are not immediately visible from
measured isotope values.
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