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ABSTRACT

'The dinoflagellate Symbiodinium sp. establishes symbiotic relationships with the anemone Exaiptasia
diaphana Rapp. The process that leads to the reciprocal recognition of the two symbiotic partners
is still not very well understood. We hypothesize that chemical signals are exchanged between the
Exaiptasia diaphana-Symbiodinium holosymbiont and aposymbiotic anemones or between free living
Symbiodinium and holo- and aposymbiotic Exaiptasia, leading to changes in organic and elemental
compositions in the aposymbiotic anemones. In order to test these hypotheses, bleached anemones
were exposed to the presence of either free living Symbiodinium, previously extracted from the same
Exaiptasia clone, or to holobionts. The ex-hospite algae and the holobionts were included in dialyses
membranes with a cut-off of 14 000 Da. In the control treatments, the experimental samples were
exposed to the presence of empty dialysis tubes. The organic composition and the elemental com-
position of the anemones were determined by Fourier Transform Infrared Spectroscopy and Total
Reflection X-Ray Fluorescence Spectroscopy/Gas Chromatography, respectively. The fact that both
the organic and elemental composition of the experimental aposymbiotic anemones differed signifi-
cantly from the controls, in the absence of any obvious nutritional effect, is suggestive of an exchange
of chemical signals between the aposymbiotic and holosymbiotic anemones.
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RESUME

Communication chimique dans l'interaction symbiotique entre l'anémone Exaiptasia diaphana (ex Aiprasia
pallida) et le dinoflagellé Symbiodinium spp.

Les dinoflagellés Symbiodinium sp. établissent des relations symbiotiques avec 'anémone Exaiptasia
diaphana Rapp. Le processus menant 2 la reconnaissance réciproque des deux partenaires symbio-
tiques n'est pas encore tres bien compris. Nous émettons 'hypothese que des signaux chimiques
sont échangés entre les holosymbiontes Exaiprasia diaphana-Symbiodinium et les anémones aposym-
biontiques ou entre les Symbiodinium libres et les Exaiptasia holo- et aposymbiotiques, entrainant des
modifications de la composition organique et élémentaire des anémones aposymbiontiques. Afin de
vérifier ces hypotheses, des anémones blanchies ont été exposées a la présence de Symbiodinium libres,
préalablement extrait du méme clone d’Exaiptasia, ou A des holobiontes. Les algues ex-hospite et les
holobiontes ont été inclus dans les membranes de dialyse ayant un seuil de coupure de 14 000 Da.
Dans les traitements de contrdle, les échantillons expérimentaux ont été exposés a la présence de
tubes de dialyse vides. La composition organique et la composition élémentaire des anémones ont été
déterminées respectivement par spectroscopie infrarouge a transformée de Fourier et par spectroscopie
de fluorescence X a rayons X a réflexion totale. Le fait que la composition organique et élémentaire
des anémones aposymbiontiques expérimentales different significativement des témoins, en 'absence
d’un effet nutritionnel évident, suggére un échange de signaux chimiques entre les anémones apo-

messager chimique,
symbiose.

INTRODUCTION

The dinoflagellates that establish symbiosis, commonly called
zooxanthellae, mainly belong to the genus Symbiodinium
Freudenthal; they can establish relations with a variety of hosts,
including protists, sponges, cnidarian and mollusks (Trench
1993; Glynn 1996; Rowan 1998; Lobban ez /. 2002) The
relationship is extremely dynamic and zooxanthellae frequently
enter and exit the symbiosis (or are acquired and expelled).
Smith & Muscatine (1999) reported that 106 zooxanthellae
leave a typical coral host every day and expulsion/escape rates
increase in situations of nutritional stress.

Symbioses can be affected and regulated by infochemicals.
For instance, communication between plants and fungi
occurs primarily through the release and detection of info-
chemicals that diffuse through the soil matrix (Barto ez /.
2012). Glycan-lectin signaling is present in several symbiotic
relationships (e.g., the nod factors in Rhizobium-leguminous
plant symbioses; Cooper 2007); it is believed that this kind
of chemical signaling also plays a role in the host-symbiont
recognition in cnidarian-dinoflagellate associations (Lin
et al. 2000; McGuinness et al. 2003; Koike ez al 2004;
Wood-Charlson et al. 2006; Jimbo et al. 2010; Davy et al.
2012). Inducible and membrane associated C-type lec-
tins are commonly found in cnidarians (McGuinness ez 4.
2003) and glycans have been found on the external surface
of Symbiodinium cells (Lin et al. 2000; Davy ez al. 2012).
It has been shown that glycan removal from Symbiodinium
cells significantly decreases the infection rates in anemones
from genus Exaiptasia (Lin er al. 2000; Wood-Charlson ez 4.
20006). Furthermore, lectins have been shown to induce the
transformation of flagellated Symbiodinium cells into a coc-
coid stage, which is the morphotype present in the symbioses
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symbiontiques et holosymbiontiques.

(Koike ez al. 2004). Although the glycan-lectin recognition
probably requires a physical contact between host and sym-
biont (Lin ez al. 2000), Hagedorn ez al. (2015) showed that
trehalose acts as chemical signals in the establishment of
cnidarians-algae symbiosis, in the absence of direct contact.
Upon the establishment of symbioses, the mode of nutrition
of the anemone changes, with consequent modification in the
animal cells composition. We therefore designed experiments
to monitor the composition of aposymbiotic specimens of
the anemone Exaiptasia diaphana Rapp, previously known
as Aiptasia diaphana, which we used as a signal of the onset
of the symbiotic process. These compositional changes were
employed to understand if the relationship between free liv-
ing Symbiodinium or the holosymbiont and the aposymbi-
otic anemone is initiated by the exchange of infochemicals
prior to any direct physical interaction. The symbiotic pair
Symbiodinium- Exaiptasia was selected because it is a well-
established experimental model for dinoflagellate-cnidarian
interaction (Muller-Parker 1985; Davy & Cook 2001; Mob-
ley & Gleason 2003; Bachar ez al. 2007).

MATERIAL AND METHODS

EXPERIMENTAL DESIGN

Bleached, aposymbiotic Exaiptasia diaphana anemones were
exposed to the presence of either the holobiont or Symbiod-
inium cells extracted from the same monoclonal Exaiptasia
population from which the bleached specimens were obtained.
The parties involved in the alleged communication were sepa-
rated by dialysis membrane with a cut-off of 14 kDa (Medicell
Membranes Ltd, London, UK); either the free Symbiodinium
(Symbiodinium treatment) or the holobiont (Exaiptasia treat-
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Fic. 1. — Organic composition in bleached Exaiptasia diaphana Rapp samples. The error bars represent the standard deviation (n > 3). Abbreviations: C, Apos-
ymbiotic Exaiptasia samples exposed to an empty dialysis tube (control group); E, Aposymbiotic Exaijptasia samples exposed to a dialysis tube containing the
holobionts; S, Aposymbiotic Exaiptasia samples exposed to a dialysis tube containing Symbiodinium cells.

ment) were put in a dialysis tube; the aposymbiotic specimens
were maintained outside of the dialysis tube.

Light (PAR) was provided by fluorescent lamps (Feilo
Sylvania Europe Limited, London, UK) with a color tem-
perature of 10 000 K; the photon flux density at the bottom
of the tank was 30 pmol m? s-1; the photoperiod was 12 h
light:12 h dark. The temperature in the tank was 27°C, the
salinity was 30, the pH 8.2 and NO, and NH; concentra-
tions were below 0.03 ppm.

The experiments were conducted in 300 ml tanks, each con-
taining 4 aposymbiotic anemones. Changes in composition
(see below) of the aposymbiotic Exaiprasia were monitored at
the beginning of the incubation (day 0), after 1 day and after
7 days. For each treatment and sampling time, we used three
tanks of anemones (total number of tanks = 18). For each
tank, one anemone was used to assess the organic composi-
tion by FTIR spectrometry, one to investigate the elemental
compositions with a CHN analyzer and one to quantify the
presence of additional elements by Total Reflection X-ray
Fluorescence spectrometry (TXRF). The fourth anemone was
used as a spare, in case of problems during the preparation
for the analyses or death during the experimental treatment
(death never occurred).

REARING OF THE ANEMONES

The Exaiptasia population used for all the experiments was
obtained from a single individual, which was cut in 4 parts
that were then allowed to grow and asexually generate new
individuals. Monoclonal Exaiprasia individuals were used
in order to minimize the influence of genetic heterogeneity
among samples.

The anemones were maintained in glass tanks with artificial
seawater (ASW; Prodac Ocean Reef, Prodac International, Cit-
tadella, Italy). Temperature and light conditions in the rearing
tanks were the same as those described for the experiments.
The anemones were fed 2 times per week with Artemia salina
nauplii obtained from INVE, Belgium. In order to avoid
regurgitation, nutrition was carried out according to Leal
etal. (2012), with 1 naplius-mL-1; the artificial scawater was
filtered to avoid the presence of particulate. The medium was
replaced 24 hours after feeding. Every 2 weeks, the anemones
were transferred to a clean tank.
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SYMBIONT EXTRACTION

Symbiodinium cells were isolated from 20 specimens of
Exaiptasia diaphana, randomly selected from our experimental
monoclonal population. Symbiodinium extraction was done
according to Yacobovitch er al. (2004). The extracted algal
cells were checked for integrity under a microscope (Leitz
hm-lux 3, Leica Microsystem, Wetzlar, Germany) and their
physiological conditions were assessed via PSII quantum
efficiency measurements effected with a Pulse Amplitude
Modulated (PAM) fluorometer (Dual-PAM-100, Walz
GmbH, Effeltrich, Germany); Fv/Fm values of ¢. 0.5 were
consistently obtained.

BLEACHING PROTOCOL

Our bleaching protocol, derived from Lehnert ez a/. (2012),
was as follows: sterile ASW was cooled to 4°C in the dark. The
anemones were then placed in the tank. After 4 h, the 4°C
water was replaced with water at 27°C, which was replaced
daily. As soon as the anemones started to open and move their
tentacles again, extend their foot and react to tactile stimuli,
the thermal shock was repeated. This procedure produced
animals apparently deprived of algae in about two weeks.
Observation with a fluorescence microscope (ZOE Fluorescent
Cell Imager, Bio-Rad, Hercules, California, USA) revealed
that few Symbiodinium cells were still present; therefore, the
anemones wete incubated in the dark for 30 min, in the pres-
ence of 50 pM of 3-(3,4-Dichlorophenyl)-1-1dimethylurea
(DCMU) and then irradiated with a photon flux density of
240 pmol m-2 s for 30 min. Until completely bleached,
the animals were kept in the dark and not fed, to avoid food
regurgitation and death. The anemones were subsequently
transferred to the same culture conditions described above
for holosymbiotic Exaiptasia, with the only difference that
they were kept in the dark and fed weekly.

ORGANIC COMPOSITION

The organic composition of aposymbiotic Exaiptasia diaphana
was assessed using a Tensor 27 Fourier Transform InfraRed
(FTIR) spectrometer (Bruker Optik GmbH, Ettlingen, Ger-
many). Anemones were frozen, homogenized with a ceramic
mortar and a pestle and then resuspended in 200 pl of Milli-
Q water; 50 pl of homogenate were deposited on a silicon
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Fic. 2. — Carbon (A), Nitrogen (B), Phosphorus (C), Sulphur (D) mean contents in bleached Exaiptasia diaphana Rapp samples. The error bars represent the
standard deviation (n = 3). Abbreviations: C, Aposymbiotic Exaiptasia samples exposed to an empty dialysis tube (control group); E, Aposymbiotic Exaiptasia
samples exposed to a dialysis tube containing the holobionts; S, Aposymbiotic Exaiptasia samples exposed to a dialysis tube containing Symbiodinium cells.

window (Silicon FZ 13 mm diameter x 1 mm thickness, pol-
ished, Crystran Limited, Poole, UK). Blanks were prepared by
depositing 50 pl Milli-Q water on silicon windows. Samples
and blanks were then dehydrated in an oven at 80°C, for 6 h.
Spectra acquisitions, normalizations and analysis were done
according to Domenighini & Giordano (2009), Marchetti
et al. (2010) and Palmucci et /. (2011).

ELEMENTAL COMPOSITION

The C and N contents were measured with a CHN ana-
lyzer (Carlo Erba EA-1108) according to Montechiaro &
Giordano (2010).

The content of P, S and of main trace elements was deter-
mined by Total Reflection X-ray Fluorescence spectrometry
(TXREF). For these measurements, the procedure by Fanesi
et al. (2014) was followed with some modifications. All
material for sample preparation and elemental analysis was
acid-washed in 10% trace-metal grade hydrochloric acid at
60°C, for at least 12 hours. It was then thoroughly rinsed
in Milli-Q H2O. In order to minimize the contamina-
tion from ambient metals, we washed our sample with an
Oxalate-EDTA (OE) solution prepared as follows: for a
final volume of 100 ml, 1.95 grams EDTA-Na,:2H,0O and
0.5 grams NaCl were added to about 60 ml milli-Q water.
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This solution was brought to pH 6.5 with 10 M NaOH.
Next, 1.26 grams of oxalic acid (C,H,04:2H,0) were dis-
solved in the solution and the pH was adjusted to pH 6.5
with 10 M NaOH. The resultant solution was brought to
100 ml volume and stored at 4°C for a maximum of 60 days.
Prior to the measurements, the anemones were soaked for
5 min in the OE solution; they were then washed in 0.5
M NaCl for further 5 min to eliminate any residue of the
OA solution, and in Milli-Q water for few seconds, to wash
away excess of NaCl.

STATISTICS

Statistical tests were conducted using the Graph Pad Prism
software, version 6.05 (GraphPad Software, San Diego, Cali-
fornia, United States) and the R software (version 3.5.1, R
Development Core Team 2018). Differences between treat-
ments and times were compared after testing the normality
of the distributions with the Shapiro-Wilk normality test
(Royston 1995) and the homogeneity of variances with
the Levene’s Test of Equality of Variances from the Lawstat
package for R (version 3.2; Levene 1960). The dataset was
transformed as log+x before being analyzed with two-way
analyses of variance (ANOVA; Chambers ez al. 1992), fol-
lowed by TukeyHSD post-hoc tests (Yandell 1997). The level

CRYPTOGAMIE, ALGOLOGIE - 2019 -+ 40 (8)
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Fic. 3. — Iron (A), Manganese (B), Magnesium (C), Copper (D), Zinc (E) mean contents in bleached Exaiptasia diaphana Rapp samples. The error bars represent
the standard deviation (n > 3). Abbreviations: C, Aposymbiotic Exaiptasia samples exposed to an empty dialysis tube (control group); E, Aposymbiotic Exaiptasia
samples exposed to a dialysis tube containing the holobionts; S, Aposymbiotic Exaiptasia samples exposed to a dialysis tube containing Symbiodinium cells.

of significance was set at 95%. Tuckey’s post-hoc tests were
only performed and described for those analyses and factors
that showed significant results. All results were expressed as
the mean of at least three biological replicates and standard
deviations.

RESULTS

RELATIVE SIZE OF THE MAIN ORGANIC POOLS

The relative sizes of the main organic pools are shown in Fig. 1.
Carboidrate:Lipid ratio, the Carboidrate:Protein ratio and
the Lipid:Protein ratio differed significantly between the two
treatments (p<0.001; Appendix 1). Carboidrate:Lipid for the
whole duration of the treatment, and Carboidrate:Protein at
day 1, were higher in the Exaiptasia treatment, whereas these
ratios were not appreciably different between the Symbiod-
inium treatment and control (Carboidrate:Lipid, Exaiptasia vs
Control: p<0.001; Carboidrate:Protein Exaiptasiavs Control:
p<0.001). Significant changes over time were observed for the
Carboidrate:Protein ratio (p<0.001) and for the Lipid:Protein
ratio (p<0.001; Appendix 1). Significant interactions between
the two factors (time and treatments) were detected for the
Carboidrate:Protein ratio (p<0.001; Appendix 1). Tuck-
ey’s post-hoc test revealed that the differences between the
Carboidrate:Lipid ratio and the Carboidrate:Protein ratio were
significant only in the Exaiprasia treatment (Carboidrate:Lipid,
Exaiptasia vs Control: p<0.001; Carboidrate:Protein Exaipta-
sia vs Control: p<0.001). The differences in the Lipid:Protein

CRYPTOGAMIE, ALGOLOGIE - 2019 - 40 (8)

ratios were confirmed by the statistical analysis only for the
Symbiodinium treatment (Lipid:Protein, Symbiodinium vs
Control: p<0.05. Appendix 1). No change was detected in
the holosymbiont, during the experiments.

ELEMENTAL COMPOSITION

The elemental composition of the aposymbiotic Exaiptasia
exposed to holosymbiotic Exaiptasia, free Symbiodinium cells
and control conditions are depicted in Fig. 2 (C, N, B S) and
Fig. 3 (Fe, Mn, Mg, Cu, and Zn).

ANOVA showed significant differences between the treat-
ments for all the macronutrients in Fig. 1 (C, p<0.05; N,
p<0.05; B p<0.001; S, p<0.05; see Appendix 2 for the outcome
of the statistical tests). Time was a significant factor for C
(p<0.01), N (p<0.05), and P (p<0.001), but not for S (p>0.05;
Appendix 2). Significant interactions between time and treat-
ment existed for P (p<0.001; Appendix 2). The amount of
P decreased with time for all treatments and for the controls
(Fig. 2C); the only exception was the Exaiptasia treatment at
day 1 (p<0.001). By day 7, the amount of P was equal in all
the experimental groups. The Tuckey’s post-hoc test did not
show significant differences among treatments (p>0.05) for
C and revealed that only the Exaiptasia treatment different
significantly from the control for the N, P and S contents
(Fig. 25 Exaiptasia vs Control for N, S: p<0.05. Exaiptasia vs
Control for P: p<0.001).

For the data in Fig. 2, significant differences between the
Exaiprasia and Symbiodinium treatment existed for the cell
content of Mg (p<0.01), Cu (p<0.001) and Zn (p<0.001);
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the same was not true for Fe and Mn (ANOVA; Appendix 3).
Mg became significantly higher in both the treatments at day
7 (Fig. 3C). The levels of Cu and Zn showed a higher value
in the Exaiptasia treatment, at day 1 (Fig. 3D, E). Time was
a significant factor for all the elements, Fe (p<0.01), Mn
(p<0.01), Mg (p<0.001), Cu (p<0.001), and Zn (p<0.05;
Appendix 3). Significant interactions between time and
treatments existed for Mg (p<0.01), Cu (p<0.001), and Zn
(p>0.001) (Appendix 3). The Tuckey’s post-hoc test revealed
that Cu and Zn were influenced by the Exaiptasia treatment
(Exaiptasiavs Control for Cu: p<0.001. Exaiptasia vs Control
for Zn: p<0.01), but were not affected by the Symébiodinium
treatment. Both the Exaiptasia and the Symbiodinium treat-
ments were different from the Controls for the amount of
Mg (Exaiprasia vs Control: p<0.01. Symbiodinium vs Con-
trol: p<0.05).

DISCUSSION

Our initial hypothesis was that chemical communication plays
a role in the establishment of symbiosis between Exaipta-
sia and Symbiodinum. A chemical interaction between the
partners of the symbiosis (i.e. aposymbiotic Exaiptasia and
free living Symbiodinium) was in our expectations. However,
our experiments did not show evidence of such interactions,
whereas holosymbiotic Exaiptasia appeared to have an effect
on the aposymbiotic Exaiptasia. This short communication
was meant to be an initial step in the investigation of the
chemical interaction between the partners of the cnidarian-
dinoflagellate symbiosis and a proof of concept for our
experimental approach. Especially the lack of response of
aposymbiotic Exaiptasia to the exposure to free Symbiodinium
cells leaves a number of questions open and a lot of space
for improvement in future experiments. For instance, the
extracted Symbiodinium cells differed from those typically
found in nature, because they were mostly in a coccoid stage
(while in nature they are usually flagellated). It may thus be
possible that they were not in a stage that allowed chemical
communication.

More revealing are the data from the interaction between
holosymbiotic and aposymbiotic Exaiptasia: our experiments
indicated that the holosymbiont is able to elicit a composi-
tional response in the aposymbiotic individuals. It is possible
that this happens through the simple transfer of compounds
from the holosymbiont to the aposymbiotic anemones. This
transfer, if the molecules that are acquired by the aposym-
biont are assimilated, should also lead to a nutritional effect
resulting in growth stimulation. The main change that we
observed in the “Exaiptasia treatment” was an increase in the
carbohydrate to protein ratio. If the increase of this ratio was
due to a higher carbohydrate content, it may be possible that
carbohydrates released by the holosymbiont (Markell & Trench
1993; Brown & Bythell 2005) were acquired by our free of
symbionts Exaiptasia. In fact, the increase of the carbohy-
drate to protein ratio observed in the “Exaiprasia treatment”
at day 1 seems to be due to a decline in the protein content
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and not to an increase in carbohydrates, since the C/N ratio
was appreciably lower at day 2 than at day 0 (especially) and
day 7 (Fig. 2). The fact that no exogenous food source was
received by the anemones during the “Exaiprasia treatment”
is also confirmed by the fact that no obvious specific nutri-
tional effect was observed in the “Exaiptasia treatment”: for
a nutritional effect to be demonstrated, it is necessary that
the acquired exogenous compounds are assimilated and cause
an increase in the biomass of the target organisms. This did
not happen in our experiments: anemones from both treat-
ments and from control experiments showed similar carbon
contents (mg C / g DW). The changes that occurred in the
composition of the aposymbiotic anemones are thus most
likely generated by an endogenous reorganization of the
organic pools elicited by signals of non-nutritional nature.
Although the increase in the carbohydrate to protein ratio
increase in our experiments seems to be mostly due to a decline
in the protein content, modest amounts of carbohydrates
may be acquired. Consequently, we cannot exclude that,
similarly to what was proposed by Hagedorn ez al. (2015)
for trehalose in coral symbioses, small non-reducing sugars
constitute the signal that triggers the response we observed,
at low concentration.

Speculatively, it may be proposed that the reorganization of
internal pools requires the intervention of metallo-proteins
using Fe, Cu and Zn, elements that were also found to
increase in parallel to the carbohydrate:protein ratio. This
would have to occur at the expenses of other proteins, since,
overall, protein decrease. Ad hoc experiments are required to
directly test this hypothesis.

In conclusion, the cell composition of aposymbiotic Exaipra-
sia diaphana changed significantly when the experimental
organisms were exposed to symbiotic anemones; this does not
seem to be due to transfer of material from the holosymbionts
nor to nutritional effects; although further confirmation is
required, our observation suggest that chemical communica-
tion occurs between symbiotic and non-symbiotic Exaiptasia.
The molecule(s) that trigger the interactions between the
holobiont and the aposymbiotic anemones have to be small
enough to diffuse through a dialysis membrane with a cut
off of 14 000 Da. For logical reasons, it is unlikely that the
onset of symbiosis requires the pre-existence of holobionts.
It is however not uncommon that infochemicals are used:
a) to distribute a response throughout a population; and b)
in feed forward mechanisms that allow the acceleration of a
response enactment till steady state is attained (Venuleo ez 4/.
2017). We thus propose that the establishment of symbiotic
relations between Exaiptasia and Symbiodinium facilitates the
propagation of the symbiosis throughout the population,
predisposing Exaiptasia individuals that have not yet been
colonized to accept Symbiodinium cells.
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APPENDICES

ApPPENDIX 1. — Summary of ANOVA results for the measurement of the Carbohydrates:Lipids ratio, Proteins:Lipids ratio, Lipids:Proteins ratio. The analyses were
conducted on transformed data (log+x). Abbreviations: Df, degrees of freedom; Sum Sqs, sum of squares; Mean Sqgs, mean of squares. Asterisks indicate sta-
tistical significances.

Df Sum Sqgs Mean Sqgs F value P

Carbohydrates:Lipids

Treatment 2 5.556 2.778 136.133 5.66 E-09 ***
Time 1 0.068 0.069 3.356 0.092
Treatment:Time 2 0.000 0.000 0.004 0.997
Residuals 12 0.245 0.020

Carbohydrates:Proteins
Treatment 2 0.266 0.132 78.180 1.31 E-07 ***
Time 1 0.333 0.333 196.270 8.47 E-09 ***
Treatment:Time 2 0.280 0.140 82.460 9.74 E-08 ***
Residuals 12 0.020 0.002

Lipids:Proteins
Treatment 2 0.000 0.000 13.942 0.000737 ***
Time 1 0.001 0.001 62.708 417 E-06 ***
Treatment:Time 2 0.000 0.000 2.076 0.168
Residuals 12 0.000 0.000

APPENDIX 2. — Summary of ANOVA for the measurements of the amounts of Carbon, Nitrogen, Phosphorus, and Sulfur. The analyses were conducted on trans-
formed data (log+x). Abbreviations: Df, degrees of freedom; Sum Sqgs, sum of squares; Mean Sqgs, mean of squares. Asterisks indicate statistical significances.

Df Sum Sqgs Mean Sqgs F value P

Carbon
Treatment 2 0.745 0.372 4.735 0.03049 *
Time 1 0.832 0.832 10.574 0.00693 **
Treatment:Time 2 0.036 0.018 0.226 0.80118
Residuals 12 0.944 0.079

Nitrogen
Treatment 2 0.735 0.368 5.103 0.0249 =
Time 1 0.543 0.543 7.536 0.0178 *
Treatment:Time 2 0.016 0.008 0.108 0.899
Residuals 12 0.865 0.072

Phosphorus
Treatment 2 1.188 0.594 30.430 1.99 E-05 ***
Time 1 0.853 0.853 43.730 2.49 E-05 ***
Treatment:Time 2 0.788 0.394 20.200 0.000144 ***
Residuals 12 0.234 0.020

Sulfur
Treatment 2 0.316 0.158 6.200 0.0142 ~*
Time 1 0.008 0.008 0.328 0.577
Treatment:Time 2 0.057 0.028 1.116 0.359
Residuals 12 0.306 0.026
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ApPENDIX 3. — Summary of ANOVA results for the measurements of the amounts of Iron, Manganese, Magnesium, Copper, and Zinc. The analyses were con-
ducted on transformed data (log+x). Abbreviations: Df, degrees of freedom; Sum Sqs, sum of squares; Mean Sgs, mean of squares. Asterisks indicate statistical
significances.

Df Sum Sqgs Mean Sqgs F value P

Iron
Treatment 2 0.005 0.0023 3.161 0.0789
Time 1 0.008 0.0085 11.503 0.00535 **
Treatment:Time 2 0.005 0.0025 3.401 0.0676
Residuals 12 0.009 0.0007

Manganese
Treatment 2 1.0110 E-04 5.0550 E-05 6.531 0.01205 *
Time 1 1.1610 E-04 1.1610 E-04 14.999 0.00222 **
Treatment:Time 2 2.6960 E-05 1.3480 E-05 1.742 0.2168
Residuals 12 9.2880 E-05 7.7400 E-06

Magnesium
Treatment 2 0.3118 0.1559 7117 0.009162 **
Time 1 0.6616 0.6616 30.199 0.000137 ***
Treatment:Time 2 0.4590 0.2295 10.476 0.002332 **
Residuals 12 0.2629 0.0219

Copper
Treatment 2 2.2220 E-04 1.1110 E-04 27.040 3.59 E-05***
Time 1 1.0080 E-04 1.0080 E-04 24.530 0.000335 ***
Treatment:Time 2 2.0690 E-04 1.0340 E-04 25.170 5.09 E-05***
Residuals 12 4.9310 E-05 4.1100 E-06

Zinc
Treatment 2 0.0827 0.0414 19.060 0.000188 ***
Time 1 0.0130 0.0130 5.994 0.030695 *
Treatment:Time 2 0.0821 0.0410 16.841 0.000195 ***
Residuals 12 0.0260 0.0022
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