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Sant N. & Ballesteros E. 2021. — The canopy-forming alga Ericaria brachycarpa (J.Agardh) Molinari-Novoa & Guiry 
(Fucales, Phaeophyceae) shows seasonal and depth adaptation to the incoming light levels. Cryptogamie, Algolo-
gie 42 (6): 67-75. https://doi.org/10.5252/cryptogamie-algologie2021v42a6. http://cryptogamie.com/algologie/42/6

ABSTRACT
Th e shallow water canopy-forming alga Ericaria brachycarpa (J.Agardh) Molinari-Novoa & Guiry 
shows higher photosynthetic effi  ciency (α), maximum photosynthetic rates (Pmax), light at compen-
sation (Ic) and dark respiration (Rd) in individuals collected at the lower depth limit of distribution 
of the species (20 m) than at shallower depths (2 and 10 m). Photosynthesis at saturation light levels 
(Psat) does not change in crossed transplants from 3 to 20 and from 20 to 3 m neither after 11 or 90 
days. However, production at low light levels (Pb) increased in transplants from 3 to 20 m and de-
creased in transplants from 20 to 3 m after 90 days. Photosynthesis, both at high and low light levels 
increased from June to September. Seasonality explained most of the variance (70%) in the values of 
Psat, whilst transplantation explained 47% of the variance for Pb and Rd. Th us, E. brachycarpa is able 
to adapt its photosynthetic performances across its depth distribution limits and easily cope with 
sudden variations in the light environment associated or not with seasonality. 

RÉSUMÉ
L’algue formant une canopée Ericaria brachycarpa (J.Agardh) Molinari-Novoa & Guiry (Fucales, Phaeophy-
ceae) montre une adaptation à la profondeur et une adaptation saisonnière aux valeurs de lumière disponible.
L’algue d’eau peu profonde formatrice de canopée Ericaria brachycarpa (J.Agardh) Molinari-Novoa & 
Guiry montre une majeure effi  cience photosynthétique (α), photosynthèse maximale (Pmax), lumière 
à la compensation (Ic) et respiration sombre (Rd) pour des individus collectés dans la limite la plus 
profonde de la bathymétrique de l’espèce (20 m) qu’à des profondeurs moindres (2 et 10 m). La 
photosynthèse en saturation (Psat) ne change pas dans des transplants croisés entre 3 et 20 mètres 
après 11 ou 90 jours. Néanmoins, la production à une basse lumière (Pb) augmente dans les trans-
plants de 3 à 20 m et diminue dans les transplants de 20 à 3 m 90 jours après la transplantation. La 
photosynthèse, tant pour les lumières hautes que pour les basses, augmente depuis juin à septembre. 
La variation saisonnière explique la plupart de la variance (70%) dans les données de Psat tandis que 
la transplantation explique les 47% de la variance pour Pb and Rd. Ainsi, E. brachycarpa peut adapter 
ses performances photosynthétiques dans ses limites de distribution en profondeur et peut facilement 
faire face à des variations de lumière qui sont associés ou non aux conditions saisonnières.
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INTRODUCTION

Th e photosynthetic response of aquatic macrophytes to the 
light intensity partially determines the habitats where they can 
thrive, together with other factors such as nutrient availability, 
hydrodynamism, environmental variability and biological 
interactions (Zabala & Ballesteros 1989; Witman & Dayton 
2001; Vergés et al. 2009). Light intensity decreases with depth 
(Ballesteros & Zabala 1993; Kirk 1994) and determines the 
depth distribution limit of most aquatic macrophytes (Kirk 
1994). Moreover, the depth distribution of aquatic macro-
phytes seems to be related to their photosynthetic features. 
According to Sant & Ballesteros (2020) deep-water species 
show higher photosynthesis at low light levels, higher photo-
synthesis at saturation, and lower light at compensation than 
shallow water species.

However, the results provided by Sant & Ballesteros (2020) 
are based on studies performed at the species level. No tests 
have been performed for specimens of the same species col-
lected at their upper, medium and lower depth distribution 
ranges and thus we still do not know which is the ability of 
each species to adapt its photosynthetic features to its light 
environment. In the case that adaptation exists, a species 
should be able to adjust its photosynthetic system in the 
same way that is performed by the diff erent species living 
at diff erent depths, i.e. increasing both photosynthetic effi  -
ciency and maximum photosynthetic yields. If depth-related 
intraspecifi c diff erences occur, another question that remains 
opened is the time –days to weeks- that the photosynthetic 
system needs to readjust its properties according to the new 
light environment. Th is specially concerns perennial species 
in temperate ecosystems since the light environment not 
only changes with depth but also with season (Weinberg & 
Cortel-Breeman 1978; Ballesteros 1989).

In order to address these issues, here we 1) compare the 
photosynthetic features of specimens of the same species of 
macroalga living at diff erent light levels; and 2) look at the 
adjustment of the photosynthesis/light patterns through time 
by transplanting specimens both from deep to shallow and 
from shallow to deep waters. Th ese questions are also rel-
evant in the frame of the rapid environmental changes that 
are being experienced in coastal areas subjected to diff erent 
anthropogenic pressures, which reduce light transmittance 
in the water column. 

MATERIAL AND METHODS

Th e selected species is Ericaria brachycarpa (J.Agardh) Moli-
nari-Novoa & Guiry (Molinari-Novoa & Guiry 2020) [syn. 
Cystoseira balearica Sauvageau, Carpodesmia brachycarpa 
(J.Agardh) S. Orellana & M. Sansón], a perennial species 
with caespitose erect cauloids up to 15 cm long, covered by 
cylindric branches with some scattered spinose appendages 
(Cormaci et al. 2012; Rodríguez-Prieto et al. 2013). Ericaria 
brachycarpa is a species endemic to the Mediterranean, being 
present in the Western Mediterranean (Verlaque 1987; Hoff -

mann et al. 1992; Gómez-Garreta et al. 1994; Ribera et al. 
1995; Sales & Ballesteros 2009; Th ibaut et al. 2016) and the 
Aegean Sea (Huvé 1972; Montesanto & Panayotidis 2000; 
Cocito et al. 2000; Catra & Giardina 2009; Giakoumi et al. 
2012; Taskin et al. 2012) but it seems to be absent on other 
Mediterranean areas like the Adriatic (Ercegovic 1952; Ivesa 
et al. 2016) or the Levantine Sea (Lakkis & Novel-Lakkis 
2000; Einav & Israel 2008). Ericaria brachycarpa can make 
underwater forests which host a huge diversity of organisms 
(Coppejans & Boudouresque 1975; Verlaque 1987; Th iriet 
et al. 2016; Piazzi et al. 2018) and have a high nursery value 
for some coastal fi shes (Cheminée et al. 2013, 2017). Th ese 
forests are mainly distributed in shallow environments, down 
to 20 m depth (Giaccone 1973; Verlaque 1987; Ballesteros 
et al. 2002; Sant 2003) and although the species is rather 
resistant to herbivory by fi sh (Vergés et al. 2009), it is highly 
consumed by the sea urchin Paracentrotus lividus (Lamarck, 
1816) which can decrease its abundance and even create 
barrens (Verlaque 1987; Ballesteros et al. 2002; Th ibaut et 
al. 2016; Piazzi & Ceccherelli 2017). Although it is rather 
resilient (Piazzi et al. 2017; Tamburello et al. 2019) the spe-
cies is considered threatened by the Barcelona Convention 
(UNEP/MAP 2009; Verlaque et al. 2019).

Sampling site was located at Illa des Porros, an islet situ-
ated at the northernmost tip of Menorca (Balearic Islands, 
Western Mediterranean) (40°05’33”N, 4°04’39”E). Th e 
shallow area, between 2 and 15 m depth, is dominated by 
a forest of E. brachycarpa, with some specimens descending 
down to 22 m, where it grows mixed with other species in a 
community dominated by Dictyopteris polypodioides (A.P. De 
Candolle) J.V. Lamouroux. 

Sampling was performed using SCUBA. Th ree depths 
were selected (3, 10 and 20 m) and the specimens collected 
to perform the experiments come from these depths. Th e 
abundance of E. brachycarpa was quantifi ed by deploying 
fi fty 25 cm × 25 cm quadrats divided into 25 subquadrats of 
5 cm × 5 cm at each of the selected depths. Th e percentage of 
subquadrats in which E. brachycarpa appeared was recorded 
and used as a measure of occurrence (Sala & Ballesteros 1997; 
Tomas et al. 2011; Sant et al. 2017). 

A fi rst set of experiments was addressed to perform the pho-
tosynthesis/light intensity curves of individuals living at 3, 10 
and 20 m depth, following procedures explained in Sant & 
Ballesteros (2020). Th ese experiments were performed only in 
June. Specimens of E. brachycarpa were collected during late 
afternoon every day at each of the selected depths. Specimens 
were maintained overnight submerged at sea inside mesh bags 
and protected from direct light until next morning. 

A second set of experiments involved the collection of 
40 specimens of E. brachycarpa, 20 from 3 m and 20 from 
20 m. Ten specimens of each depth were transplanted at 
the depth where they came from 3 to 3 (3to3) and 20 to 20 
(20to20) and the other 10 were transplanted at the other depth 
[3 to 20 (3to20) and 20 to 3 (20to3)]. Transplantation took 
place at mid June. All specimens were transplanted the same 
day of collection and fi xed again to the rock by means of a 
two-component non-toxic epoxy glue (IVEGOR®) (Cebrian 
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et al. 2006; Sales et al. 2011). Th e production of oxygen at 
saturation light levels (Psat), production of oxygen at low light 
levels (Pb) and dark respiration (Rd) was measured for control 
specimens (non transplanted, nt3 and nt20) at the day of 
transplantation (0), 11 days after transplantation (11) and 
90 days after transplantation (90). Th e same measures were 
performed for transplant controls and transplants at 11 (June) 
and 90 days after transplantation (September). Branches of 
the control and transplanted specimens were collected during 
late afternoon the day before the assays were performed, at 
each depth and maintained overnight submerged at sea inside 
mesh bags and protected from direct light until next morning.  

Branches were sorted and prepared for photosynthesis and 
respiration assays in the early morning just before the experi-
ments began (Sant & Ballesteros 2020). Material selection, 
manipulation and assays were performed according to the 
recommendations made by Littler (1979), Littler & Arnold 
(1980) and Littler & Littler (1985). Photosynthesis assays 
were performed in 270 mL glass bottles. Apical branches 
with a length of 2-3 cm were selected among the collected 
material, cleaned of macroepiphytes with small forceps, and 
introduced in the glass bottles containing seawater and a glass 
marble hanging inside the bottle and subjected with a nylon 
line. Only one to two branches were introduced at every 
bottle. Th e bottles with the algal specimens were hung in a 
structure hanging from a buoy and placed in the sea at For-
nells Bay, nearby the sampling station, at 2 m depth. Waves 
moved the structure and the glass marbles shook the water 
inside the bottle, breaking diff usion gradients. 

For the fi rst set of experiments, four replicated bottles per 
depth (3, 10 and 20 m) and four empty bottles (to account 
for variation not due to macroalgae) were assayed every day 
at a diff erent photon fl ux density (PFD) making a total of 16 
assays per day. Nine diff erent PFDs were obtained by covering 
the structure with a diff erent number of neutral fi lters, using a 
black fi lter to measure dark respiration. Ambient light in each 
assay was measured using a spherical sensor Li-1000 SPQA 
deployed at the same site and depth of the hanging structure. 
PFD attenuation inside the hanging structure with increasing 
number of fi lters was also measured (y = 100e-0.52x, R2 = 0.99, 
x = number of neutral fi lters, y = % ambient PFD). Light 
intensities ranged between 0 and 2100 μmol photon m-2 s-1. 

In the second set of experiments Psat values were measured 
at mean PFDs of 1762 μmol photon m-2 s-1 in June and 1243 
μmol photon m-2 s-1 in September, Pb values were estimated 
for mean PFDs of 119 μmol photon m-2 s-1 in June and 106 
μmol photon m-2 s-1 in September. We also tested that the 
diff erent incubation PFDs between the days of the experiment 
was low enough not to interfere signifi cantly on the results 
(regression analysis, p>0.05). Rd was measured as in the fi rst 
set of experiments.

Incubation times ranged between 3 and 4 hours and assays 
were always performed between 10:00 am and 2:00 pm. Each 
branch was used only once, which made every assay independ-
ent from the others. Oxygen was measured after the assay with 
an Oxygen Analyzer Orbisphere 2607 with an accuracy of 
0.01 mg O2 l-1. Oxygen production/dark consumption was 

measured as the diff erence between the oxygen from each bot-
tle containing a specimen and the average of the four empty 
bottles. Specimens used in the assays were dried at 60°C for 
48 hours to obtain their dry weight (DW) (Boudouresque 
1971; Romero 1981; Ballesteros 1986). Th e specimens were 
then burned in an oven for 4 h at 500°C to obtain the ash 
free dry weight (AFDW; Brinkhuis 1985).

In the fi rst set of experiments the data obtained in the 
assays was pooled together to obtain the photosynthesis/light 
intensity (PFD) curves. We did not adjust any function to 
the curves due to the existence of diff erent models (see Jones 
et al. 2014 for a discussion). Alternatively, we have obtained 
the diff erent photosynthetic parameters directly based on 
photosynthesis at saturation levels (Pmax) and variation of 
photosynthesis at low light levels (photosynthetic effi  ciency, 
α) (Arenas et al. 1995; Gómez et al. 1996; Gómez & Wiencke 
1997), which allows comparisons within our data. Th e photo-
synthetic parameters fi nally obtained were dark respiration (Rd 
in mg O2·gAFDW-1·h-1), light at compensation (Ic in μmol 
photon·m-2·s-1), photosynthetic effi  ciency [α in mg O2·m2 s 
(μmol photon·gAFDW·h)-1], light at saturation levels (Ik in 
μmol photon·m-2·s-1), and photosynthesis at saturation levels 
(Pmax in mg O2·gAFDW-1·h-1). 

Nutrient content in tissues was measured from specimens 
collected at the depths of 3, 10 and 20 m during the fi rst set 
of experiments. Th e samples were frozen after collection and 
on arrival in the laboratory they were defrosted, dried and 
triturated. Carbon and nitrogen were measured with a Carlo-
Erba Autoanalyzer (Serveis Científi co-Tècnics, University of 
Barcelona) and phosphorus was analysed with an inductively 
coupled plasma mass spectrometer (ICP) after acid digestion 
of the samples, following Mateo & Sabaté (1993).

Diff erences between Pmax and Rd between depths were tested 
with a one-way ANOVA followed by a Tukey test. To compare 
the lineal part of the photosynthesis/PFD curves (α) a two-
way (species and light) ANOVA followed by a Tukey test was 
used. Data was log-transformed in order to accomplish the 
assumptions of ANOVA. Relationships between parameters 
were estimated using Pearson lineal correlations.

Diff erences in Psat and Pb were tested with ANOVA using 
factors “transplant” and “time”, where “transplant” is the kind 
of transplant applied and “time” is the length of the experiment 
in days. When there was a signifi cant correlation between mean 
values and their variances, or data did not follow normality, 
data was transformed to accomplish ANOVA assumptions. 
When ANOVAs were signifi cant (p<0.05) means were com-
pared using Tukey tests. Mean values of “transplant controls” 
were compared with controls (non transplanted specimens) 
from the same depth by means of t-Student tests. All statis-
tical analysis were performed using SYSTAT© (SPSS Inc.).

RESULTS

Th e abundance of E. brachycarpa decreases with depth (Fig. 1), 
being dominant between 3 and 10 m and showing a low 
abundance at 20 m. Th e photosynthesis/PFD curves from 
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specimens collected at 3 and 10 m are very similar and slightly 
diff erent from specimens collected at 20 m (Fig. 2). Th e lin-
ear part of the P/PFD curves follows the same trend (Fig. 3), 
with a slightly steeper slope at 20 m. Photosynthetic effi  ciency 
(α) is higher in specimens living at 20 m than at 10 and 3 m 
(Table 1), while Pmax, Ic and Rd are also higher (Table 2). 
Diff erences between 10 and 3 m are never signifi cant, while 
diff erences between 20 and 10 or 3 m are always signifi cant 
(Table 3). Ik is lower at 20 m than at 3 or 10 m (Table 2). N:P, 
C:N and C:P do not show any trend with depth (Table 4). 

Regarding the transplant experiment we did not found 
signifi cant diff erences between non-transplanted plants (con-
trols nt3, nt20) and transplanted controls (3to3 and 20to20) 
(p>0.05, t-Student). Psat, Pb and Rd after 11 days and 90 days 
are presented in Fig. 4. Depth transplants (3to20 and 20to3) 
did not change signifi cantly the Psat after 11 days, not after 
90 days (Fig. 4, Table 5). Depth transplants also did not 
signifi cantly change the Pb after 11 days (Table 5) but Pb 
changed after 90 days, increasing for transplants from 3 to 
20 and decreasing for transplants from 20 to 3 (Table 5). Rd 
did not change after 90 days but diff erences were signifi cant 
between transplants 3to20 and 20to3 after 11 days (Table 5). 

In general, photosynthesis (both at high and low light lev-
els) and dark respiration increased from June to September 
(Fig. 4). Diff erences of Psat between June and September were 
very important, explaining almost 70% of total variance for 
only 12.5% of variance associated to transplantation eff ects 
(Table 6). In contrast, the eff ect of transplantation explains 
47% of total variance for Pb and Rd whilst seasonality only 
accounts for 11-13% (Table 6). 

DISCUSSION  

Specimens of E. brachycarpa living at 20 m show an adaptation 
to depth by increasing photosynthesis at saturation, light at 
compensation, and photosynthetic effi  ciency and by decreas-
ing light at saturation. So, they are more effi  cient at using 
low light levels, require lower light levels to saturate photo-
synthesis, and reach higher photosynthetic rates if exposed to 
high light intensities. Th ese patterns are exactly the same than 
those described by Sant & Ballesteros (2020) when dealing 
with a wide range of aquatic macrophytes distributed along 
a bathymetric gradient. Th e increase in α is typical of macro-
phytes adapted to survive at low light conditions (Kirk 1994; 
Lobban & Harrison 1994; Taiz & Zeiger 1998) but this is 
not the case at 20 m in the Balearic islands where there is still 
plenty of light (Ballesteros & Zabala 1993). Th e increase in 
Pmax should be also related to the general positive relationship 
between α and Pmax described by Sant & Ballesteros (2020) 
for Mediterranean macroalgae, meaning that there is a general 
pattern of adaptation to low light environments or decreasing 
light levels that spans at diff erent taxonomical (across orders, 
families, genera and species) and population (within the same 
species) scales. Th is situation contrasts with results obtained 
when measuring photosynthetic features of blades of the same 
specimen of Macrocystis pyrifera (Linnaeus) C. Agardh distrib-

TABLE 1 .— Lineal fi tting of the initial part of every Photosynthesis/PFD curve (0 to 
85 μmol photon m-2s-1) where α is the slope of the fi tted line (= photosynthetic 
effi  ciency), and interc. is the intercept; p < 0.001 (***).

Depth α ± se interc. ± se R2 n F p
–3 m 0.057 0.004 –0.87 0.20 0.92 20 205.4 ***
–10 m 0.053 0.004 –0.74 0.17 0.92 18 183.1 ***
–20 m 0.088 0.004 –1.77 0.22 0.96 20 423.7 ***

TABLE 2 . — Photosynthetic parameters (Pmax: photosynthesis at saturation, in mg 
O2·g AFDW-1·h-1, Ik: light at saturation, in μmol photon m-2s-1, Ic: light at com-
pensation, in μmol photon·m-2·s-1), dark respiration (Rd), in mg O2·g AFDW-1·h-1.

Depth Pmax ± sd Ik Ic α Rd ± sd
–3 m 6.24 1.33 124.3 15.2 0.057 0.50 0.11
–10 m 6.02 1.28 126.6 13.9 0.053 0.45 0.13
–20 m 7.65 1.50 107.2 20.1 0.088 1.00 0.14
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FIG. 1 . — Percentage abundance of Ericaria brachycarpa (J. Agardh) Molinari-
Novoa & Guiry at the sampling station estimated from 50 reticulated quadrats 
of 625 cm2 per depth.

TABLE 3 .— Results of one-way ANOVAs (depth) variables Pmax and Rd, the Tukey 
test for the variable Pmax, and results of the two-way ANOVA (depth and light) 
and the Tukey test between species for the lineal part of the Photosynthesis/
PFD curves (α). Abbreviations: df, degrees of freedom; MS, mean squares; 
%var, percentage of explained variance; p, signifi cation level: non signifi cant 
(ns), p < 0.05 (*), p < 0.01 (**), p < 0.001 (***).

 factor df MS %var. F p depth –3 m –10 m

Pmax

depth 2 12.70 24.5 6.66 ** –10 m ns –
error 41 1.91 75.5 – – –20 m * **

α

depth 2 0.96 77.2 5.37 ** depth –3 m –10 m
light 1 47.03 3.1 263.89 ***  –10 m ns –
interaction 2 1.34 4.4 7.51 ** –20 m * *
error 52 0.18 15.2 – – – – –

Rd

depth 2 0.374 83.1 2296.00 *** depth –3 m –10 m
error 9 0.016 16.9 13.40 – –10 m ns –

– – – – – –20 m ** ***

TABLE 4 .— N:P, C:P and C:N ratios in algal (branch) tissues at diff erent depths.

Depth N:P C:P C:N
3 45.7 2533.1 55.6

10 36.2 1987.3 54.9
20 42.3 2595.2 61.4
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uted along a depth gradient (Colombo-Pallotta et al. 2006) 
where Pmax decreases with depth but still this can be perhaps 
explained by the high capacity of photoassimilates transloca-
tion of this species across the same individual (Parker 1963; 
Fox 2013), which does not occur when dealing with diff erent 
individuals. Moreover Sant & Ballesteros (2020) suggested 
that the higher Pmax and α found in deep-water species could 
be related to a higher nutrient content in tissues but here we 
do not fi nd any outstanding diff erences between C:N, N:P 
or C:P ratios between depths, meaning that nutrients should 
not be as important as thought. Th is is consistent with the 

nutrient homogeneity found in waters above the thermocline, 
which is situated around 30 to 35 m depth in the Balearic 
islands (Ballesteros & Zabala 1993). 

Transplant experiments show that when specimens are 
transplanted from shallow to deep waters there is an increase 
in Pb after 90 days but not in Psat. Ramus et al. (1977) showed 
how Fucus vesiculosus Linnaeus and Ascophyllum nodosum (Lin-
naeus) Le Jolis increased both Pmax and α when transplanted 
at deeper environments and suggested that the macroalgae 
increase photosynthetic pigments but also the number of 
photosyntethic units (PSU; Ramus et al. 1977). Since there 
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is no increase in Psat in our experiments we suggest that 
E. brachycarpa is probably only increasing pigments and no 
PSU, which are needed to achieve higher photosynthetic rates 
at high light levels. Unfortunately we did not measure pigment 
concentrations and thus we do not have a response for this 
hypothesis. In fact, the increase of Psat also involves changes 
in enzymes related to carboxilation mechanisms (Boardman 
1977; Gerard 1988; Littler & Littler 1992), which probably 
need longer time periods and are related to N availability 
(Ramus 1983; Peckol & Ramus 1988).

Regarding transplants from deep to shallow waters, there 
is a decrease in Pb after 90 days, which is consistent with the 
increase of Pb reported before, when specimens were trans-
planted from shallow to deep waters. Th is means that photo-

synthesis at low light levels, and hence α, easily responds to 
changes in the light environment in such a way that individuals 
can use more effi  ciently the available light.

Another interesting result of the transplant experiment is 
the seasonal changes observed in both Psat and Pb, as well as 
in dark respiration, which are always higher than the changes 
observed in depth transplants. As in other temperate seas, the 
light environment changes seasonally in the Mediterranean 
(Ballesteros 1992; Ballesteros & Zabala 1993) and macroalgal 
physiology responds to this variation. In fact, Sant & Balles-
teros (2020) reported a seasonal increase in Pmax and α from 
spring to autumn, which is consistent with our measures and 
with the light intensity decrease from June to September in 
the Mediterranean (Weinberg & Cortel-Breeman 1978; Bal-
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lesteros 1992). Similar increases in maximum quantum yields 
in months with lower radiation levels have been found in 
the bull kelp, Durvillaea antarctica (Chamisso) Hariot (Tala 
et al. 2019). Another factor that could explain the seasonal 
diff erences in Pmax and α is the temperature that is known 
to aff ect photosynthesis in members of the order Fucales 
(Stengel & Dring 1998; Murakami et al. 2004; Terada et al. 
2018). In September, water temperature above the ther-
mocline is 5°C higher than in June (Ballesteros & Zabala 
1993) but there is no data in the photosynthetic response of 
E. brachycarpa to temperature and thus, no conclusion can 
be drawn. Nevertheless, all the data obtained in this study 
and that provided by Sant & Ballesteros (2020) points to the 
same direction: whenever there is a decrease in the amount 
of light -usually related to depth but also to season- Mediter-
ranean algae respond by increasing photosynthetic effi  ciency 
and (usually) photosynthesis at saturation, as well as decreas-
ing light at compensation. Th is means that the adaptation 
to the light environment of a population of macroalgae, in 
particular E. brachycarpa, depends both on depth and season. 
Th e plasticity of E. brachycarpa to adapt to the light environ-
ment suggests that the species can cope with small decreases 
in water transparency due to anthropogenic pressures such 
as sediment resuspension or chlorophyll increase in the water 
column related to nutrient uploads.  
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