Cryptogamie Algologie 2021 · 42 · 1

Molecular data reveal the presence of three Plocamium Lamouroux species with complex patterns of distribution in Southern Chile

> Alejandro E. MONTECINOS, Oscar R. HUANEL, María E. RAMÍREZ & Marie-Laure GUILLEMIN

art. 42 (1) — Published on 25 January 2021 www.cryptogamie.com/algologie

PUBLICATIONS
SCIENTIFIQUES

MUSEUM
NAL-HIST
NATURELLE

DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR: Bruno DAVID

Président du Muséum national d'Histoire naturelle

RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Line LE GALL

Muséum national d'Histoire naturelle

Assistante de Rédaction / Assistant Editor : Marianne SALAÜN (algo@cryptogamie.com)

MISE EN PAGE / PAGE LAYOUT : Marianne SALAÜN

RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS

Ecoevolutionary dynamics of algae in a changing world

Stacy KRUEGER-HADFIELD

Department of Biology, University of Alabama, 1300 University Blvd, Birmingham, AL 35294 (United States)

Jana KULICHOVA

Department of Botany, Charles University, Prague (Czech Republic)

Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona (Italy)

Phylogenetic systematics, species delimitation & genetics of speciation

Sylvain FAUGERON

UMI3614 Evolutionary Biology and Ecology of Algae, Departamento de Ecología, Facultad de Ciencias Biologicas,

Pontificia Universidad Catolica de Chile, Av. Bernardo O'Higgins 340, Santiago (Chile)

Marie-Laure GUILLEMIN

Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia (Chile)

Diana SARNO

Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli (Italy)

Comparative evolutionary genomics of algae

Nicolas BLOUIN

Department of Molecular Biology, University of Wyoming, Dept. 3944, 1000 E University Ave, Laramie, WY 82071 (United States)

Heroen VERBRUGGEN

School of BioSciences, University of Melbourne, Victoria, 3010 (Australia)

Algal physiology & photosynthesis

Janet KÜBLER

California State University Northridge, Department of Biology, California State University, Northridge, CA 91330-8303 (United States)

Prokaryotic algae

Nico SAL MASO

IASMA Research and Innovation Centre, Fondazione Mach-Istituto Agrario di S. Michele all'Adige, Limnology and River Ecology,

Via E. Mach, 1, 38010 San Michele all'Adige, Trento (Italy)

Vitor VASCONCELOS

Faculdade de Ciências da Universidade do Porto and CIIMAR, Rua do Campo Alegre, s/n, 4169-007 Porto (Portugal)

COUVERTURE / COVER:

Plocamium spp. sampled in Fiordo Yendegaia (Tierra del Fuego, Chile), low intertidal. Photograph taken by Erasmo Macaya / Plocamium spp. échantillonné à Fiordo Yendegaia (Terre de Feu, Chili), zone intertidale basse. Photo de Erasmo Macaya (http://www.algalab.com/)

Cryptogamie, Algologie est indexé dans / Cryptogamie, Algologie is indexed in:

- Aquatic Sciences & Fisheries Abstracts Part I.
- Biological Abstracts
- Chemical Abstracts
- Current Contents
- Marine Science Contents Tables (FAO)
- Science Citation Index
- Publications bibliographiques du CNRS (Pascal).

Cryptogamie, Algologie est distribué en version électronique par / Cryptogamie, Algologie is distributed electronically by:

- BioOne® (http://www.bioone.org/loi/crya)

Cryptogamie, Algologie est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris Cryptogamie, Algologie is a fast track journal published by the Museum Science Press, Paris

Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publishes: Adansonia, Geodiversitas, Zoosystema, Anthropozoologica, European Journal of Taxonomy, Naturae, Comptes Rendus Palevol, Cryptogamie sous-sections Bryologie, Mycologie.

Diffusion - Publications scientifiques Muséum national d'Histoire naturelle

CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél.: 33 (0)1 40 79 48 05 / Fax: 33 (0)1 40 79 38 40

diff.pub@mnhn.fr / http://sciencepress.mnhn.fr

© Publications scientifiques du Muséum national d'Histoire naturelle, Paris, 2021

ISSN (imprimé / print): 0181-1568 / ISSN (électronique / electronic): 1776-0984

Molecular data reveal the presence of three *Plocamium*Lamouroux species with complex patterns of distribution in Southern Chile

Alejandro E. MONTECINOS

Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Casilla 567, Valdivia (Chile)

Oscar R. HUANEL

Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago (Chile) and IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, UC, UACH, Station Biologique de Roscoff, Place Georges Teissier, 29688 Roscoff (France)

María E. RAMÍREZ

Museo Nacional de Historia Natural, Área Botánica, Casilla 787, Santiago (Chile)

Marie-Laure GUILLEMIN

Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias,
Universidad Austral de Chile, Casilla 567, Valdivia (Chile)
and IRL EBEA 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université,
UC, UACH, Station Biologique de Roscoff, Place Georges Teissier, 29688 Roscoff (France)
marielaure.guillemin@gmail.com (corresponding author)

Submitted on 16 May 2020 | Accepted on 3 December 2020 | Published on 25 January 2021

Montecinos A. E., Huanel O. R., Ramírez M. E. & Guillemin M.-L. 2021. — Molecular data reveal the presence of three *Plocamium* Lamouroux species with complex patterns of distribution in Southern Chile. *Cryptogamie, Algologie* 42 (1): 1-19. https://doi.org/10.5252/cryptogamie-algologie2021v42a1. http://cryptogamie.com/algologie/42/1

ABSTRACT

Plocamium Lamouroux is a widespread genus for which 45 species are currently recognized. However, classical taxonomy based only on morphological characters, is problematic within this genus. The use of molecular tools has uncovered cryptic genetic species, mistakenly grouped under the name of morphological species that are common and widespread (including the generitype *Plocamium cartilagineum* (Linnaeus) P.S.Dixon). The aim of this work was to evaluate the species diversity of *Plocamium* in Southern Chile. For this purpose, three independent molecular markers were sequenced in samples collected from seven populations located between 41°S and 54°S. The species diversity was evaluated using phylogenetic reconstructions and two independent methods for species delimitation (ABGD and GMYC). The outcomes of each method were congruent, suggesting the presence of three species in Southern Chile. One species, named Plocamium sp. 1, is restricted to Punta Guabún, the only locality sampled north of the biogeographic barrier of the 42°S. The other two species, *Plocamium* sp. 2 and 3 are distributed in sympatry in Patagonia and Tierra del Fuego. The three Chilean species form a clade phylogenetically close to sequences obtained from New Zealand and Australia and a divergence along the coasts of Chile after past transoceanic dispersal is proposed. We propose that divergence in glacial microrefugia could have subsequently happen in the southern part of the coast, this hypothesis being supported by the strong impact of glacial maxima on population dynamics, especially in *Plocamium* sp. 3.

KEY WORDS Species delimitation, genetic species, long-distance dispersal, speciation, Rhodophyta, red algae. Des données moléculaires révèlent la présence de trois espèces de Plocamium Lamouroux présentant un patron de distribution complexe dans le sud du Chili.

Quarante-cinq espèces sont actuellement reconnues dans le genre Plocamium Lamouroux, un genre présentant une très ample distribution. Cependant, la taxonomie classique, basée uniquement sur les caractères morphologiques, est problématique au sein de ce genre. L'utilisation d'outils moléculaires a permis de révéler l'existence d'espèces génétiques cryptiques, groupées par erreur sous un même nom, celui d'espèces morphologiques courantes et répandues (y compris l'espèce type du genre *Plocamium*: Plocamium cartilagineum (Linnaeus) P.S.Dixon)). L'objectif de notre travail était d'évaluer la diversité d'espèces de Plocamium dans le sud du Chili. À cet effet, trois marqueurs moléculaires indépendants ont été séquencés pour des échantillons prélevés dans sept populations situées entre 41°S et 54°S. La diversité en terme d'espèces a été évaluée à l'aide de reconstructions phylogénétiques et de deux méthodes indépendantes de délimitation d'espèces génétiques (ABGD et GMYC). Les résultats des différentes méthodes sont congruents, suggérant la présence de trois espèces dans le sud du Chili. Une espèce, nommée *Plocamium* sp. 1, est limitée à Punta Guabún, la seule localité échantillonnée au nord de la barrière biogéographique du 42°S. Les deux autres espèces, *Plocamium* sp. 2 et 3 sont distribuées en sympatrie en Patagonie et en Terre de Feu. Les trois espèces chiliennes forment un clade phylogénétiquement proche de séquences obtenues en Nouvelle-Zélande et en Australie et une divergence le long des côtes du Chili après un évènement historique de dispersion transocéanique passée pourrait expliquer ce résultat. Nous proposons des phénomènes postérieurs de divergence en micro-refuges glaciaires comme moteur de la spéciation en Patagonie et en Terre de Feu. Cette hypothèse est étayée par le fort impact des maxima glaciaires sur la dynamique des populations, en particulier dans le cas de Plocamium sp. 3.

MOTS CLÉS
Délimitation d'espèces,
espèces génétiques,
dispersion à longue
distance,
spéciation,
Rhodophyta,
algues rouges.

INTRODUCTION

Plocamium Lamouroux is a cosmopolitan genus of red seaweed for which 45 species have been recognized to the date (Guiry & Guiry 2020). These species have been recorded from the Arctic to the Antarctic, in intertidal and subtidal waters (Wynne 2002). This genus has recently received more attention due its relevance in the production of bioproducts (Calegario et al. 2019), including anti-cancer molecules (Antunes et al. 2011; Alves et al. 2018), herbicides (Gressler et al. 2011; Pereira & Vasconcelos 2014) and molecules with anti-herbivore properties (San-Martin et al. 1991; Pereira & Costa-Lotufo 2012). Thus, the development of molecular studies allowing clear species recognition and a better understanding of the evolutionary history of this genus, are critical for subsequent research on these biomolecules of potential importance.

Traditional taxonomy of *Plocamium* species is based on the number of ramuli (i.e., small protrusions occurring along the thalli main or secondary axes) in alternating series, the width, colour, length, consistency of the thallus, the morphology of the lower ramulus, the arrangement of tetrasporangial structures and cystocarps (Simons 1964; Womersley 1971; South & Adams 1979; Gabrielson & Scagel 1989; Cremades et al. 2011). However, these morphological characters have been recognized as insufficient to describe and distinguish between some species (Yano et al. 2004; Saunders & Lehmkuhl 2005; Cremades et al. 2011). For example, the generitype species, *Plocamium cartilagineum* (Linnaeus) P.S.Dixon is purportedly very widespread, being recorded in the North Atlantic, eastern and western North Pacific, northern Arabian Sea, Australia, New Zealand, Antarctica and Chile (Bischoff-Bäsmann & Wiencke 1996; Wynne 2002). Nevertheless, molecular studies have demonstrated that specimens named as *P. cartilagineum* based on morphological characters actually represented various cryptic species that could be easily distinguished genetically. For example, in a study using molecular nuclear marker LSU sequences for numerous morphological specimens of *P. cartilagineum* from northern Europe, four genetic cryptic species were revealed (Saunders & Lehmkuhl 2005). Moreover, another case of cryptic genetic species has been reported using the molecular marker 5P-COI, in individuals of *P. angustum* (J.Agardh) J.D.Hooker & Harvey from Australia and New Zealand (Cremades *et al.* 2011).

Contrasting with P. cartilagineum and P. angustum, some taxonomically recognized species, as for example P. nanum G.W.Saunders & Lehmkuhl, show restricted distributions (Saunders & Lehmkuhl 2005) probably linked to the presence of biogeographical barriers. Biogeographical barriers are zones defined by rapid changes in biota that can act as barriers to migration (Dawson 2001). In the marine realm, biogeographical barriers have often been associated with landscape features, such as the presence of strong currents or topographical features (e.g. sandy beaches, river mouth, sea mount) limiting gene flow between populations and have been reported as important drivers of speciation, especially in taxa presenting low dispersal capacity (Avise 2000; Kuo & Avise 2005). Deep phylogeographic discontinuities, congruent with biogeographic barriers, have commonly been encountered in widespread species with distributions encompassing various biogeographic areas (Dawson 2001; Hurt et al. 2009). For example, numerous studies have uncovered deep genetic divergence in coastal marine taxa that coincide with recognized transition zones, such as the California transition zone (Dawson 2001; Kelly & Palumbi 2010) and the 30°S-33°S

area located along the Chilean coast (Tellier et al. 2009; Montecinos et al. 2012; Haye et al. 2014). These transition zones have been related to the effect of historical processes, mostly linked to eustatic or climatic changes associated with Pleistocene glacial cycles (Avise 2000). In the case of *Plocamium*, various widespread morphological species, encompassing more than one biogeographic area, have been reported. In these taxa, the use of molecular markers and genetic species delimitation approaches can help in reevaluating species diversity and distribution.

The Chilean coast is subdivided in three major biogeographical regions (Camus 2001): the Peruvian Province (PP), located from Peru to a southern limit around 30-33°S on the northern coast of Chile; the Magellanic Province (MP) extending from Cape Horn (56°S) north to 41-42°S (Chiloé Island) and an Intermediate Area (IA) limited by the PP and MP provinces. These biogeographical regions are characterized by distinct biota from warm-temperate in PP to cold-water and sub-Antarctic species in MP. The IA is characterized by a gradual overlap of biota characteristic of the other two provinces (Camus 2001). Phylogeographic breaks concordant with the biogeographic limit at 41°S-42°S have been reported for various marine or coastal species, such as Acanthina monodon Pallas, a brooding gastropod, (Sánchez et al. 2011) and the Patagonian otter Lontra provocax Thomas (Vianna et al. 2011). The coastline north of 42°S is continuous, linear and dominated by rocky shores only intersected by a few small rivers and sandy beaches, while a high density of islands, fjords and channels, influenced by sub-Antarctic oceanographic and climatic conditions, characterizes the shoreline south of 42°S. These distinct coastal morphologies are the results of major topographic transformations due to interglacial/glacial cycles during the Pliocene and Pleistocene in Southern Chile (Mercer 1976; McCulloch et al. 2000). During glacial maxima, in particular during the Last Glacial Maximum (LGM, 20 000 years ago), ice sheets covered a broad region of Southern Chile from the Chiloé Island at 41°S to Cape Horn at 56°S (Hulton et al. 2002; Saillard et al. 2009). Glacial periods were characterized by the retraction of the temperate biota in glacial refugia while interglacial periods were characterized by range expansion of these species in areas previously covered by ice.

Along the Chilean coast, three species of *Plocamium* identified using morphology have a distribution range that span more than one Chilean bioregion: P. cartilagineum (in the Peruvian Province, the Intermediate Area and the Magellanic Province), P. secundatum (Kützing) Kützing (in the Peruvian and Magellanic Province), and P. pacificum Kylin (in the Peruvian Province and Intermediate Area) (Etcheverry 1986; Ramírez & Santelices 1991; Ramírez 2010). In addition to the extensive distribution of these morphological species, cryptic species have already been reported in P. cartilagineum (Saunders & Lehmkuhl 2005; Cremades et al. 2011), casting doubts about *Plocamium* diversity and distribution in Chile. The present work aims to explore *Plocamium* species diversity and evolutionary history in Southern Chile (41°S-54°S) using genetic markers encompassing the three cell compartments

TABLE 1. - Sampling localities and number of individuals sequenced for the three molecular markers used in the present study. Abbreviations (CODE) and geographic coordinates are indicated.

Locality	CODE	Coordinates	5P-COI	rbcL	LSU
Punta Guabún	GUA	41°38'S, 74°02'W	17	6	2
San Gregorio	GRE	52°33'S, 70°02'W	2	-	-
Parque Chabunco	CHA	52°59'S, 70°48'W	19	-	-
Faro Porvenir	POR	53°18'S, 70°27'W	18	-	-
Los Canelos	CAN	53°28'S, 70°11'W	9	1	1
Faro San Isidro	FSI	53°46'S, 70°58'W	24	2	1
Fiordo Yendegaia	YEN	54°54'S, 68°42'W	18	9	1
		TOTAL	107	18	5

(i.e., mitochondria, chloroplast and nucleus). Using these molecular data sets, we applied different methods to delimit species (as conceptualized by the phylogenetic species concept; de Queiroz 1998) and improve knowledge on Plocamium diversity. We hypothesized that genetic species, if existent, will show distributions limited by the biogeographic barrier at 42°S and that species encountered in Patagonia and Tierra del Fuego will present historical population dynamics (i.e., contraction during the LGM and recent expansion) strongly affected by the glacial/interglacial cycles.

MATERIAL AND METHODS

SAMPLING

A total of 107 individuals of *Plocamium* spp. were collected from 7 localities (Table 1). One locality was located north of the 42°S (i.e., Punta Guabún) and six localities were located south of the 42°S (i.e., San Gregorio, Parque Chabunco, Faro Porvenir, Los Canelos, Faro San Isidro and Fiordo Yendegaia). Intertidal samplings were conducted during diurnal low tide in Los Canelos and Fiordo Yendegaia while subtidal samplings were done by means of SCUBA diving in the rest of the localities studied. Each sample corresponds to a single frond cut from an isolated holdfast.

In the field, all the samples were first named "P. cartilagineum". However, more precise observations in the lab show that some individuals from the southern part of the country presented a ramification pattern not fully congruent with the one expected for P. cartilagineum (slender ramuli, not all ramification unilateral, very bushy in appearance). In the same way, samples from Punta Guabún did not present the typical *P. cartilagineum* morphology. These small plants were characterized by an intense red color with sympodial branching characterized by profuse ramifications almost from the base and third and fourth order branches arranged in a scalloped manner. Because of these slightly distinct morphologies and since only a few mature tetrasporophytes were sampled we choose to refer to all individuals studied here as *Plocamium* spp. For most individuals (i.e., 96) only small tissue fragments were conserved in silica and no observation in the lab could be made. The 11 samples guarded as voucher specimens are housed in the herbarium of the National Museum of Natural History, Chile (SGO, see voucher numbers in Appendix 5)

DNA EXTRACTION, PCR AMPLIFICATION, SEQUENCING AND SEQUENCE ALIGNMENT

Dry tissues were ground by hand in liquid nitrogen and DNA was extracted using extraction kit E.Z.N.A.® Poly-Gel DNA Extraction (Omega Bio-Tek Inc., Norcross, United States). Three independent genetic markers were used to provide complementary species identification based on molecular criterion: a partial sequence of the mitochondrial Cytochrome c Oxidase I gene (5P-COI); a partial sequence of the plastid gene rbcL, encoding the large subunit of the ribulose-1,5-bisphosphate (rbcL) and the partial large subunit ribosomal RNA gene (LSU). The amplification of 5P-COI was performed, for all specimens sampled, using the primers developed by Saunders (2005). The amplification of the *rbc*L marker was performed for a subset of samples (n = 18) using the primers developed by Hommersand et al. (1994). The LSU was amplified as three overlapping fragments with previously published primer combinations (Harper & Saunders 2001), in a subset of five samples. For the 5P-COI, PCR were performed using conditions described in Dubrasquet et al. (2018) while rbcL and LSU markers were amplified using conditions described in Hommersand et al. (1994) and Harper & Saunders (2001), respectively. For both rbcL and LSU genes, sub samples included individuals from the three genetic groups recovered by the 5P-COI (more details in the results section below). PCR products were purified using commercial kit E.Z.N.A. DNAProbe Purification (Omega Bio-Tek Inc., Norcross, United States) and sequenced with primers used for amplification at the AUSTRAL-omics Core-Facilities (Valdivia, Chile). Sequences were aligned manually using Mega X (Kumar et al. 2018) and checked by eye; only traces with high quality values and no ambiguities were retained for further analyses.

PHYLOGENETIC ANALYSES

To explore phylogenetic relationships between *Plocamium* species, 250 5P-COI sequences from the genus available in GenBank were added to our data set. In the same way, 24 and 20 sequences from GenBank were added to the *rbc*L and LSU data sets, respectively. Phylogenetic analyses were conducted independently for each gene, using both Maximum Likelihood (ML) and Bayesian Inference (BI) methods. ML analyses were performed using W-IQ-Tree (Trifinopoulos et al. 2016). The best-fit substitution model was selected using the Bayesian Information Criterion (Kalyaanamoorthy et al. 2017) implemented in W-IQ-Tree. The selected model was K3Pu+F+I+G4 for the 5P-COI, TN+F+I+G4 for the rbcL and GTR + F + I + G4 for the LSU. BI analyses were conducted using MrBayes v3.2.7 (Ronquist et al. 2012). Two independent analyses were run using, for each one, four chains and 20 million generations. Trees and parameters were sampled every 1000 generations and the default parameters for temperature and branch swapping were used. The first 20% of the sampled trees were discarded as "burn-in" to ensure stabilization. The remaining trees were used to compute a consensus topology and posterior probability values. The split frequency (variance among the four independent runs) was below 0.005, confirming that the posterior probability distribution was accurately sampled.

DELIMITATION OF GENETIC SPECIES

To evaluate the existence of genetic species, two independent analyses were conducted using the 5P-COI dataset. First, the Automatic Barcode Gap Discovery (ABGD) was remotely run at https://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html. ABGD identifies a value separating the frequency distribution of intraspecific pairwise genetic distances from the ones of interspecific pairwise genetic distances, even when they overlap, and use it as a threshold to delimit species (Puillandre et al. 2012). We computed Kimura two-parameter (K2P) genetic distances and used default ABGD settings. Second, a General Mixed Yule Coalescent (GMYC) analysis was run. GMYC identifies a threshold value for the shift in branching rate from coalescent lineage branching to interspecific diversification on an ultrametric tree and explicitly delimits "independently evolving" clusters (i.e., putative species; Pons et al. 2006; Monaghan et al. 2009). Before the analysis, duplicated haplotypes were removed from the data set using DnaSP v6.12.03 (Rozas et al. 2017). Branch lengths were estimated under a relaxed log-normal clock using the Bayesian analysis implemented in BEAST v1.10.4 (Suchard et al. 2018). A coalescent (constant size) prior was used and Markov Chains Monte Carlo (MCMC) were run for 20 million generations. Trees were sampled each 1000 generations with a 10% burnin. A visual inspection of MCMC progression using Tracer v1.7.1 (Rambaut et al. 2018) was performed to corroborate stabilization. An ultrametric tree was constructed using Tree Annotator v1.10.4 (Rambaut & Drummond 2018). Since the multiple-thresholds approach tends to overestimate the number of delineated species (Fujisawa & Barraclough 2013) only the single-threshold (Pons et al. 2006) versions of GMYC was fitted on the ultrametric tree using the SPLITS v1.0-19 package for R (https://r-forge.r-project.org/projects/splits/).

GENETIC DIVERSITY, NETWORK RECONSTRUCTION AND HISTORICAL DEMOGRAPHY

Within each genetic species, defined using ABGD and GMYC, four diversity indices were calculated for the 5P-COI gene using DnaSP v6.12.03 (Rozas *et al.* 2017): the number of haplotypes (nH), the number of polymorphic sites (S), gene diversity (H, Nei 1987) and nucleotide diversity (π , Nei & Li 1979). Moreover, within each genetic species, haplotype networks were reconstructed for the 5P-COI using the medianjoining algorithm implemented in NETWORK v10.1.0.0 (Bandelt *et al.* 1999).

Finally, to evaluate changes in the demographic history of the genetic species, two complementary approaches were used to infer the historical demography using the 5P-COI dataset. First, Tajima's D (Tajima 1989) and Fu's Fs (Fu 1997) statistics were calculated to detect significant past changes in population size. Significant departure from selection-drift equilibrium was tested using 1,000 bootstrap replicates in Arlequin v3.5.2.2 (Excoffier & Lischer 2010). Under the presumption of neutrality, negative values distinguish popula-

tions in expansion while positive values, associated to the loss of rare alleles, are considered as signature of recent bottleneck (Tajima 1989; Fu 1997). Second, the observed mismatch distributions of the number of differences between pairs of 5P-COI sequences were compared to estimated values under a model of demographic expansion (Roger & Harpending 1992) using Arlequin v3.5.2.2 (Excoffier & Lischer 2010). Multimodal distributions generally characterize populations in demographic equilibrium while unimodal distributions are associated with recent expansion.

RESULTS

A total of 107 sequences of *Plocamium* spp. collected from 7 localities were obtained for the 5P-COI (575bp; Table 1). Moreover, a sub sample of 18 and 5 individuals were sequenced for the rbcL (641bp) and the LSU (2960bp), respectively (Table 1). GenBank accession numbers for the three molecular markers sequenced are available in the Appendix 5.

PHYLOGENETIC RELATIONSHIPS

Phylogenetic relationships based on 5P-COI, for both the ML and BI analyses, recovered all specimens sequenced in the present study as a single, well-supported monophyletic group, strongly divergent from all the other sequences of *Plocamium* available in GenBank (Fig. 1). This Chilean clade appear as nested within a poorly resolved group including most specimens sampled in Australia and New Zealand, and as sister to a well-supported monophyletic group composed by specimens of P. cartilagineum from New Zealand, P. patagiatum J.Agardh from Australia and P. angustum from Australia and New Zealand (Fig. 1). It is interesting to note that specimens sampled within the same ocean tend to be genetically related (Fig. 1). The Chilean clade was also recovered as sister of South Hemisphere *Plocamium* species for the *rbc*L (i.e., as sister to KC174809, U21703, U26821 and HQ224543 from New Zealand, Appendix 1) and for the LSU (as sister to AY881712 and AY881714 from Australia, Appendix 2). Finally, Chilean sequences from the present study form three monophyletic lineages observed for the three genetic markers used (Fig. 1, Appendices 1, 2). Whatever the gene under study, these lineages were generally well supported for both the ML and BI analyses (Fig. 1, Appendices 1, 2).

SPECIES DELIMITATION

Genetic pairwise K2P distances for the 5P-COI ranged from 0 to 0.062 and the ABGD located the barcode gap within the 0.010-0.030 distance range (Appendix 3B). Primary partitions using this threshold suggested the existence of three genetic groups (Fig. 2, Appendix 3A). The likelihood of the GMYC model for the single threshold model was (LGMYCsingle = 44.04); a value significantly higher than the one obtained for the null model (L0 = 40.86). The number of partitions obtained for the GMYC was three, with confidence limits of three to five (Fig. 2, Appendix 4). The three monophyletic groups recovered using phylogenetic reconstructions (Fig. 1,

TABLE 2. - Genetic diversity estimates for the molecular marker 5P-COI. Each Plocamium Lamouroux genetic species, as delimited by ABGD and GMYC, was treated separately. Abbreviations: N: number of sequences; nH: number of haplotypes; \mathbf{H} : gene diversity; $\mathbf{\pi}$: nucleotide diversity; \mathbf{S} : number of polymorphic sites: SD: Standard deviation.

Species	N	nΗ	Н	SD	π	SD	s
Plocamium sp. 1	17	2	0.118	0.101	0.00019	0.00048	1
Plocamium sp. 2	17	5	0.684	0.099	0.00144	0.00111	4
Plocamium sp. 3	73	6	0.133	0.054	0.00026	0.00093	6
TOTAL	107						

Appendices 1, 2) were supported as putative species by both the ABGD and the GMYC single-threshold results (Fig. 2). Moreover, values of Kimura 2-parameter (K2P) were more than ten times higher when measured between genetic species (*Plocamium* sp. 1 - *Plocamium* sp. 2 = 0.05361 ± 0.00936 ; *Plocamium* sp. 1 - *Plocamium* sp. 3 = 0.03063 ± 0.00684 ; *Plocamium* sp. 2 - *Plocamium* sp. $3 = 0.04652 \pm 0.00865$) than between haplotypes sequenced within a single genetic species (within *Plocamium* sp. $1 = 0.00019 \pm 0.00019$; within *Plocamium* sp. $2 = 0.00040 \pm 0.00014$; within *Plocamium* sp. $3 = 0.00144 \pm 0.00079$). The three putative genetic species of Plocamium from Southern Chile were then named Plocamium sp. 1, Plocamium sp. 2 and Plocamium sp. 3. Plocamium sp. 1 was restricted to Punta Guabún, the only locality sampled north of the 42°S in the present study, while the two other species were distributed in sympatry in Southern Chile (Fig. 3). The two species *Plocamium* sp. 2 and *Plocamium* sp. 3 were collected at the same sites in both intertidal (i.e., Los Canelos and Fiordo Yendegaia) and subtidal (i.e., San Gregorio, Faro Porvenir and Faro San Isidro) (Fig. 3). The 19 samples from Parque Chabunco were identified as *Plocamium* sp. 3.

GENETIC DIVERSITY, HAPLOTYPE NETWORK AND DEMOGRAPHIC HISTORY.

For the 5P-COI data set the number of haplotypes (nH) and number of polymorphic sites (S) were the lowest in *Plocamium* sp. 1 (nH = 2; S = 1) and the highest in *Plocamium* sp. 3 (nH = 6; S = 6; Table 2). The highest values of genetic and nucleotide diversity were encountered in *Plocamium* sp. 2 (H = 0.684 ± 0.099 and π = 0.00144 ± 0.00111), while the lowest values were encountered in *Plocamium* sp. 1 (H = 0.118 ± 0.101 and $\pi = 0.00019 \pm 0.00048$) (Table 2). *Plocamium* sp. 2 presented a haplotype network slightly more reticulated than the two other species, for which star-like type of networks were observed (Fig. 3). In the haplotype network *Plocamium* sp. 2 was connected to *Plocamium* sp. 3 by 25 mutational steps, while *Plocamium* sp. 1 was connected to *Plocamium* sp. 2 by 18 mutational steps. Whatever the species under study, all values of Tajima's D and Fu's Fs statistics were negative, but these were significant only for *Plocamium* sp. 3 (Table 3). Mismatch distributions were unimodal with the most commonly calculated number of differences between pairs of sequences equal to 0 in *Plocamium* sp. 1 and *Plocamium* sp. 3 and to 1 in Plocamium sp. 2 (Fig. 4). Tests for goodness-of-fit based on the sum of square deviations (SSD) for the demographic expansion model give values ranking from 0.00012 (p-value =

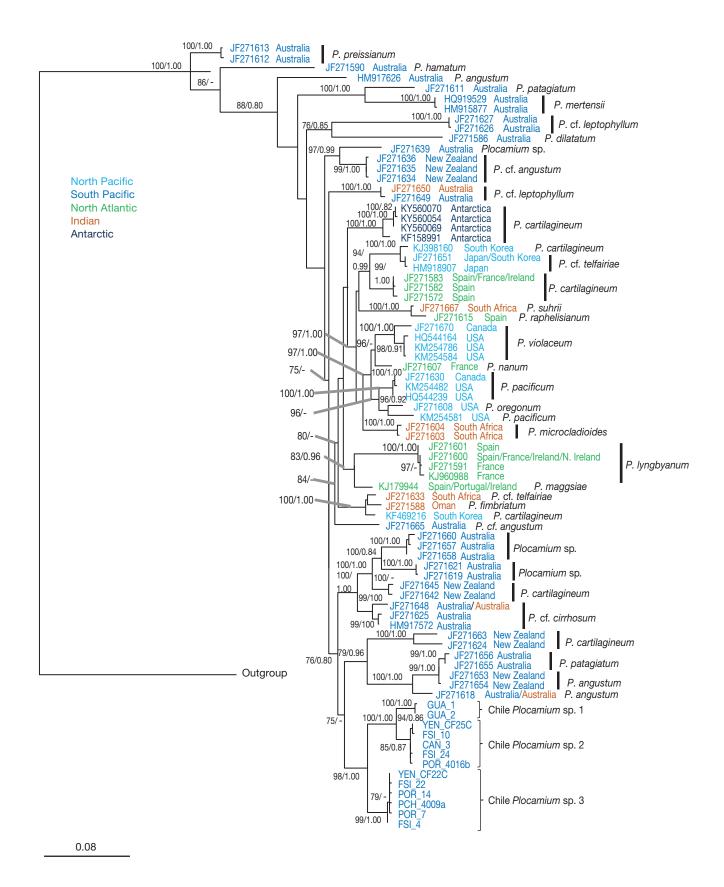


Fig. 1. — Maximum likelihood (ML) phylogram of the genus *Plocamium* Lamouroux based on 5P-COI sequences. ML bootstrap (BS)/Bayesian posterior probability (PP) values are shown above each branch and only values superior to 75 and 0.75, respectively, are given. Colors correspond to oceans where individuals sequenced where sampled. Species names, as reported in GenBank, are given on the right. Outgroup corresponds to *Asparagopsis armata* Harvey (GenBank accession: KJ960344).

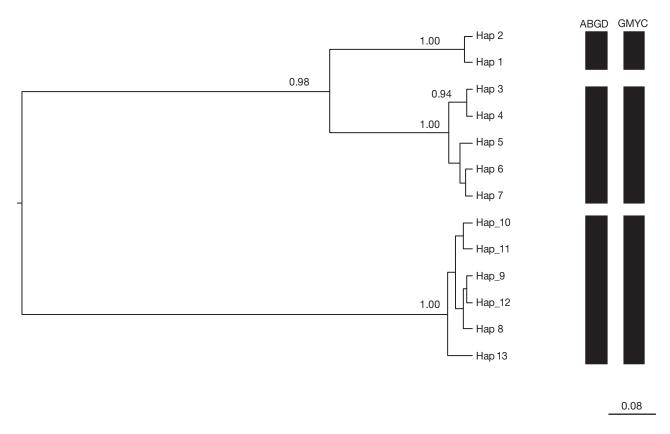


Fig. 2. — Bayesian inference ultrametric gene tree (5P-COI). Species delimitation results from ABGD and GMYC are given on the right. Only distinct haplotypes sequenced during the present study are represented. Haplotype code as in Appendix 5.

0.38400) for *Plocamium* sp. 1 and 0.00028 (p-value = 0.34400) for *Plocamium* sp. 3 up to 0.01945 (p-value = 0.23400) for Plocamium sp. 2 (Table 3). These results did not reject the null hypothesis of a population expansion in any of the three genetic species studied.

DISCUSSION

Our study revealed the existence of three genetic species of Plocamium in Southern Chile, with Plocamium sp. 2 and *Plocamium* sp. 3 located in sympatry in Patagonia and Tierra del Fuego while *Plocamium* sp. 1 was only encountered north of the biogeographical limit at 42°S. Interestingly, phylogenetic analyses recovered the Chilean clade as sister to a wellsupported monophyletic group composed by specimens from New Zealand and Australia, suggesting the occurrence of transoceanic dispersal in the past. On the other hand, various paraphyletic taxa were observed within *Plocamium* phylogenetic trees (e.g. P. cartilagineum, P. patagiatum, P. angustum, P. fimbriatum M.J. Wynne, P. violaceum and P. pacificum; Fig. 1), clearly pointing out the difficulty of species identification based on morphological characters in this genus (Cremades et al. 2011). Concordance across results obtained with different methods (here GMYC and ABGD) and monophyly recovered in trees reconstructed with unlinked markers are now widely acknowledged as suitable for genetic species delimitation (Carstens et al. 2013; Modica et al. 2014). Our

results confirm the relevance of information obtained from molecular markers encompassing the three cell compartments (i.e., mitochondria, chloroplast and nucleus) to delimit species in the genus *Plocamium* and better estimate species diversity, distribution and understand the evolutionary history in these highly morphologically variable red algae.

Transoceanic dispersal as potential origin OF CHILEAN PLOCAMIUM SPECIES ANCESTRAL CLADE

In the phylogenetic trees, the three Chilean *Plocamium* species formed a clade embedded in sequences from the Southern Hemisphere and genetically close to clades from New Zealand and Australia. We propose that the Chilean *Plocamium* clade has diverged from Australian or New Zealand colonists, after their arrival by rafting in Chile. Transoceanic dispersal has commonly been reported, especially in taxa with high capacity of dispersal, for example fish (Blower et al. 2012) or crustacea (Page et al. 2005). Recurrent dispersal, more than vicariance, has indeed been postulated to be the mechanism leading to the biogeographic patterns and disjunct species distributions observed nowadays in the Southern Ocean (Waters 2008; Fraser et al. 2013). The importance of transoceanic rafting is less recognized in marine species with limited dispersal capacity (i.e., lack of larvae or short lived propagules) even if recent studies have demonstrated that this mechanism, depending on the species physiological/reproductive tolerance, could be highly efficient, allowing rapid expansion of their distribution ranges (Thiel & Gutow 2005a, b; Fraser et al. 2011;

CRYPTOGAMIE, ALGOLOGIE • 2021 • 42 (1)

TABLE 3. – Neutrality tests calculated using the 5P-COI marker data set. Results are given separately for each *Plocamium* Lamouroux genetic species (as delimited by ABGD and GMYC).

Species	Tajima's D	p-value	Fu's Fs	p-value	SSD	p-value
Plocamium sp. 1	-1.16387	0.14500	-0.74844	0.07800	0.00012	0.38400
Plocamium sp. 2	-0.74003	0.26300	-1.61645	0.08000	0.01945	0.23400
Plocamium sp. 3	-2.16969	0.00000	-7.46656	0.00000	0.00028	0.34400

Fraser et al. 2013; Waters et al. 2013; Guillemin et al. 2014, 2016; Tala et al. 2019). In the Southern Hemisphere, currents are dominated by the Antarctic Circumpolar Current (ACC) and the West Wind Drift (WWD) (Waters 2008). Recurrent dispersal from Australia and/or New Zealand to Chile have been registered using molecular data in various macroalgae including the buoyant seaweed Durvillaea antarctica (Chamisso) Hariot (Fraser et al. 2009), but also the non-buoyant species Bostrychia intricata (Bory) Montagne, Adenocystis utricularis (Bory) Skottsberg (Fraser et al. 2013), Capreolia implexa Guiry & Womersley (Boo et al. 2014) and Agarophyton chilense (C.J.Bird, McLachlan & E.C.Oliveira) Gurgel, J.N.Norris et Fredericq (as *Gracilaria chilensis* C.J.Bird, McLachlan & E.C.Oliveira; Guillemin et al. 2014). All these species show genetic signatures of recent west to east dispersal across vast oceanic distances. In the case of the genus Durvillaea Bory there is evidence of a long-distance dispersal event from New Zealand to temperate Chile that was followed by genetic divergence leading to the speciation of *D. incurvata* (Suhr) Macaya (a species restricted to Chilean temperate waters) some 3 -10 million years ago (Fraser et al. 2013; Fraser et al. 2019). Studies in other organisms, as in the coastal sac spiders of the genus Amaurobioides O. Pickard-Cambridge, show repeated events of long-distance dispersal along the WWD followed by divergence, revealing a remarkable pattern of "stepping-stone" speciation all around the Southern Ocean (Ceccarelli et al. 2016).

Speciation in the genus PLOCAMIUM along the coast of Southern Chile

After transpacific colonization, distinct processes of divergence seem to have taken place during the radiation of the genetic Chilean *Plocamium* species ancestral clade. The species *Plo*camium sp. 1 is found isolated north of the biogeographical limit of 42°S and we propose that parapatric or allopatric speciation could have taken place in this case. A strong biogeographic discontinuity has been described at 41-42°S (Camus 2001), generally related to the latitudinal migration of the southern Westerlies during the Miocene-Pleistocene. The split of the WWD into the northward Humboldt Current and the southward Cape Horn Current, located at these latitudes, has been demonstrated to represent a major oceanic barrier that has contributed to the origin of the biogeographic break. Nowadays, contrasted ecologic, climatic and topographic features characterize both sides of the 41-42°S biogeographical limit (Camus 2001). In the past, major currents restricting gene flow could have led to the divergence of *Plocamium* sp. 1 from *Plocamium* sp. 2 and 3; while more subtle differences in term of coastal topography or salinity could also help in maintaining these species genetic integrity nowadays. Our sampling does not allow separation of patterns of allopatric from parapatric speciation nor to precisely pinpoint the phylogeographic break in *Plocamium* (i.e., the gap between IA and MP sampling sites span more than 1200 kilometers). However, other genetic studies described a phylogeographic break at the 41-42°S zone or nearby (the buoyant kelps *Durvillaea* spp., Fraser et al. 2010; in the brooding gastropod, Acanthina monodon, Sánchez et al. 2011; the Patagonian otter Lontra provocax, Vianna et al. 2011). Theoretical studies emphasize the possible quick genetic divergence that could be observed in scenarios of parapatric speciation in organisms with low dispersal capacity, as is the case for *Plocamium*, (Gravilets *et al.* 2000; Kuo & Avise 2005). Moreover, parapatric speciation has been suggested as a common mechanism of speciation in macroalgae along the Chilean coast (brown algae: Lessonia trabeculata Villouta & Santelices and L. spicata (Suhr) Santelices, as L. nigrescens Bory in Tellier et al. 2009; red alga: Mazzaella laminarioides (Bory) Fredericq, Montecinos et al. 2012).

Contrasting with *Plocamium* sp. 1, the species *Plocamium* sp. 2 and 3 were in sympatry in most localities sampled in Patagonia and Tierra del Fuego. Existence of cryptic genetic species or diverged haplotypic groups distributed in sympatry in Southern Chile have already been reported in three macroalgae: Adenocystis utricularis, Bostrychia intricata (Fraser et al. 2013) and Iridaea cordata (Turner) Bory (Ocaranza-Barrera et al. 2019). In these cases, divergence in sympatry or micro-allopatry could be hypothesized. Exhaustive surveys have revealed common patterns of genetic divergence, consistent with isolation in refugia during glacial periods, in various organisms (Hewitt 2004; Sérsic et al. 2011). During the Pleistocene glacial/interglacial cycles populations of temperate species could have survived in isolated microrefugia in Patagonia and Tierra del Fuego (for example, terrestrial organisms: Sérsic et al. 2011; freshwater fish: Zemlak et al. 2010). In the region, during the glacial maxima, Plocamium populations could have survived in small pockets of suitable habitat located at the edge of, or even within, glaciated areas (Rull 2009; Mosblech et al. 2011). During isolation periods (i.e., glacial maxima), divergence between microrefugia could be favored by drift and/or selection. After interglacial expansion from refugia, differentiated genetic groups or species (e.g. *Plocamium* sp. 2 and 3) could then be observed in sympatry in localities where secondary contact takes place (Zemlak et al. 2008; Zhang et al. 2008; Durand et al. 2009). Supporting the impact of glacial/interglacial cycles on marine Chilean species living at high latitude,

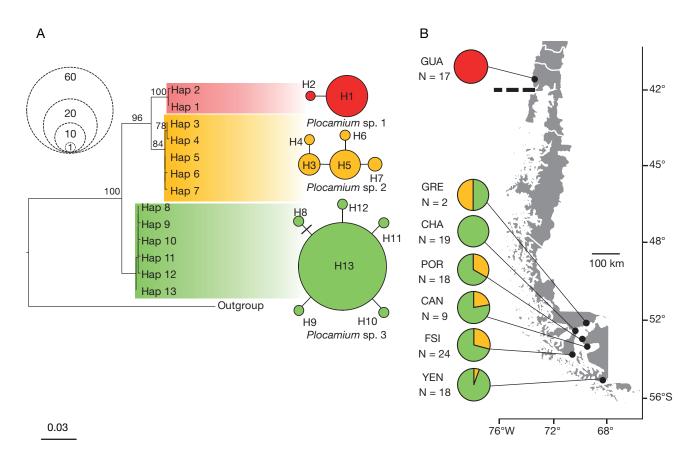


Fig. 3. — A, ML tree (left) and Neighbour joining (NJ) network (right) inferred from 5P-COI sequences dataset of Plocamium specimens from the present study. In the tree, numbers above the branches are support values as inferred from ML analysis, only values superior to 75 are given. In the NJ networks, haplotypes are represented by open circles with size proportional to frequency within each genetic species (see upper left corner for correspondence between number of sequences and circle size). For haplotypes separated by more than one mutational step, black bars indicate the additional number of steps; B, Plocamium Lamouroux species distribution; the number (N) of individuals sequenced is indicated for each sampling locality. Code for each locality as in Table 1; haplotype code as in Appendix 5. Dashed line represents the biogeographic transition zone located at 42°S.

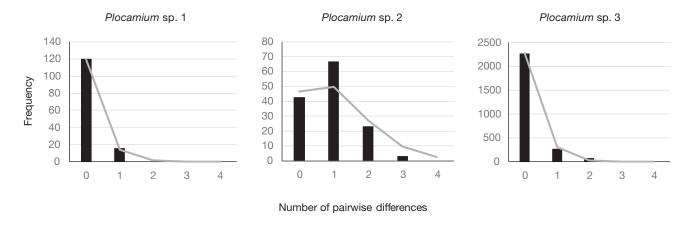


Fig. 4. — Mismatch distributions calculated for the 5P-COI data set; each Plocamium genetic species (as delimited by ABGD and GMYC) was treated separately. Observed distributions (black histograms) and expected distributions under a model of demographic expansion (grey lines) of the number of pair base differences between sequences of 5P-COI.

our results suggest that both *Plocamium* sp. 2 and 3 have been affected by these cycles but that the bottleneck and demographic expansion is more recent in *Plocamium* sp. 3 (i.e., bottleneck probably linked to the LGM) than in Plocamium sp. 2. Strong ice impact during the LGM and

recent demographic expansion has also been observed in other Patagonian macroalgae as Mazzaella laminarioides (Montecinos et al. 2012), Gigartina skottsbergii Setchell & N.L.Gardner (Billard et al. 2015) and Durvillaea antarctica (Fraser et al. 2009).

Various cryptic species, incorrectly named P. cartilagineum using morphological characters, are present in distinct parts of the Southern Hemisphere. One interesting example is the presence of *P. cartilagineum* sequences from individuals collected in Antarctica forming a genetic group fairly distinct from *Plocamium* sp. 1, 2 and 3 from Chile (see Fig. 1). Similar results were obtained for Iridaea cordata (Ocaranza-Barrera et al. 2019) and Gigartina skottsbergii (Billard et al. 2015), where cryptic sister species were encountered on both side of the Drake Passage. The main difference between *Plocamium* and *Iridaea cordata* and *Gigartina skottsbergii* is that Antarctic and Chilean species are not sister species in the case of *Plocamium.* Complex patterns of long distance colonization followed by speciation seem to characterize Southern Hemisphere macroalgae; with some colonization routes following the main currents (ACC and WWD; Durvillaea: Fraser et al. 2019; Trematocarpus Kützing and Mazzaella G.De Toni f.: Hommersand & Fredericq 2003; *Plocamium*: present study) and some crossing them (ACC; Iridaea cordata and Gigartina skottsbergii: Hommersand & Fredericq 2003; Billard et al. 2015; Ocaranza-Barrera et al. 2019). More efforts are needed to understand the evolutionary history of *Plocamium* in the Southern Hemisphere including the sub-Antarctic Islands and the coasts of the Antarctic Peninsula. Moreover, further work increasing the number of sites sampled (especially in the PP and the IA) could help to better understand *Plocamium* species diversity in Chile and to study speciation processes in this ecologically important group of red algae.

Acknowledgements

This study was supported by the INACH project RG_15-16 and the FONDAP program project no. 15150003 (FONDAP IDEAL). OH is supported by BECA DE DOCTORADO NACIONAL Grant#21120791 (CONICYT, Chile). The authors are grateful to Sylvain Faugeron and his team for sample collection in Punta Guabún, Erasmo Macaya for sample collection in Fiordo Yendegaia, Mateo Caceres and Diego Bravo for their help in the field in Patagonia and Tierra del Fuego, and Kamilla Flores Robles and Hardy Guzman for lab support. We would like to thank the two reviewers for their comments and efforts towards improving our manuscript. We also thank the IDEAL staff for assistance with infrastructure, especially in Punta Arenas.

Data sharing and data accessibility

The authors confirm that all data underlying the findings are fully available without restriction. All sequences are available in GenBank (accession numbers in Appendix 5).

Competing interest

The authors declare that they have no competing interests.

Author contribution

MLG conceived the study. AEM and ORH generated molecular data sets. AEM performed molecular and statistical analyses. AEM and MLG drafted the manuscript. MER deposited the

individuals into the museum (SGO) and obtained the vouchers code. All authors contributed to discussions resulting in the final manuscript.

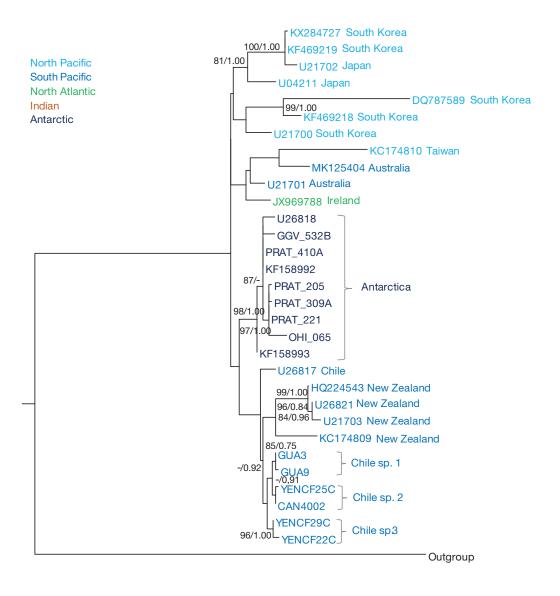
REFERENCES

- ALVES C., PINTEUS S., RODRIGUES A., HORTA A. & PEDROSA R. 2018. Algae from Portuguese coast presented high cytotoxicity and antiproliferative effects on an in vitro model of human colorectal cancer. *Pharmacognosy Research* 10 (1): 24-30.
- Antunes E. M., Afolayan A. F., Chiwakata M. T., Fakee J., Knott M. G., Whibley C. E., Hendricks D. T., Bolton J. J. & Beukes D. R. 2011. Identification and in vitro antiesophageal cancer activity of a series of halogenated monoterpenes isolated from the South African seaweeds *Plocamium suhrii* and *Plocamium cornutum*. *Phytochemistry* 72: 769-772. https://doi.org/10.1016/j.phytochem.2011.02.003
- AVISE J. 2000. *Phylogeography: the History and Formation of Species*. Harvard University Press, Cambridge, 464p.
- BANDELT H. J., FORSTER P. & RÖHL A. 1999. Median-Joining networks for inferring intraspecific phylogenies. *Molecular Biology and Evolution* 16: 37-48.
- BILLARD E., REYES J., MANSILLA A., FAUGERON S. & GUILLEMIN M.-L. 2015. Deep genetic divergence between austral populations of the red alga *Gigartina skottsbergii* reveals a cryptic species endemic to the Antarctic continent. *Polar Biology* 38: 2021-2034.
- BISCHOFF-BÄSMANN B. & WIENCKE C. 1996. Temperature requirements for growth and survival of Antarctic Rhodophyta. *Journal of Phycology* 32: 525-535. https://doi.org/10.1111/j.0022-3646.1996.00525.x
- BLOWER D. C., PANDOLFI J. M., BRUCE B. D., GOMEZ-CABRERA M. C. & OVENDEN J. R. 2012. Population genetics of Australian white sharks reveals fine-scale spatial structure, transoceanic dispersal events and low effective population sizes. *Marine Ecology Progress Series* 455: 229-244. https://doi.org/10.3354/meps09659
- Boo Ĝ. H., Mansilla A., Nelson W., Bellgrove A. & Boo S. M. 2014. Genetic connectivity between transoceanic populations of *Capreolia implexa* (Gelidiales, Rhodophyta) in cool temperate waters of Australasia and Chile. *Aquatic Botany* 119: 73-79. https://doi.org/10.1016/j.aquabot.2014.08.004
- CALEGARIO G., FREITAS L., SANTOS E., SILVA B., OLIVEIRA L., GARCIA G., OMACHI C., PEREIRA R., THOMPSON C. & THOMPSON F. 2019. Environmental modulation of the proteomic profiles from closely phylogenetically related populations of the red seaweed *Plocamium brasiliense*. *PeerJ* 7: e6469.
- CAMUS P. 2001. Biogeografía marina de Chile continental. Revista Chilena de Historia Natural 74: 587-617. https://doi. org/10.4067/S0716-078X2001000300008
- CARSTENS B. C., PELLETIER T. A., REID N. M. & SATLER J. D. 2013. How to fail at species delimitation. *Molecular Ecology* 22: 4369-4383. https://doi.org/10.1111/mec.12413
- CECCARELLI S. F., OPELL B. D., HADDAD C. R., RAVEN R. J., SOTO E. M. & RAMIREZ M. J. 2016. Around the world in eight million years: Historical biogeography and evolution of the spray zone spider Amaurobioides (Araneae: Anyphaenidae). *PLoS ONE* 11 (10): e0163740.
- CREMADES J., BARREIRO R., MANEIRO I. & SAUNDERS G. W. 2011. A new taxonomic interpretation of the type of *Plocamium cartilagineum* (Plocamiales, Florideophyceae) and its consequences. *European Journal of Phycology* 46 (2): 125-142. https://doi.org/10.1080/09670262.2011.565129
- DAWSON M. N. 2001. Phylogeography in coastal marine animals: a solution from California? *Journal of Biogeography* 28: 723-736. https://doi.org/10.1046/j.1365-2699.2001.00572.x
- DE QUEIROZ K. 1998. The general lineage concept of species,

- species criteria, and the process of speciation: A conceptual unification and terminological recommendations, in HOWARD D. J. & BERLOCHER S. H. (eds), Endless forms: Species and Speciation. Oxford University Press, Oxford: 57-75.
- Dubrasquet H., Reyes J., Sanchez R. P., Valdivia N. & Guil-LEMIN M.-L. 2018. — Molecular-assisted revision of red macroalgal diversity and distribution along the Western Antarctic Peninsula and South Shetland Islands. Cryptogamie, Algologie 39 (4): 409-429. https://doi.org/10.7872/crya/v39.iss4.2018.409
- Durand E., Jay F., Gaggiotti O. E. & Francois O. 2009. Spatial inference of admixture proportions and secondary contact zones. Molecular Biology and Evolution 26: 1963-1973. https:// doi.org/10.1093/molbev/msp106
- ETCHEVERRY H. 1986. Algas marinas bentónicas de Chile. UNESCO, Regional office of Science and Technology for Latin America and the Caribbean. Montevideo, 381p.
- EXCOFFIER L. & LISCHER H. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10: 56.
- Fraser C. I., Nikula R., Spencer H. G. & Waters J. M. 2009. -Kelp genes reveal effects of subantarctic sea ice during the Last Glacial Maximum. Proceedings of the National Academy of Sciences of USA 106: 3249-3253. https://doi.org/10.1073/pnas.0810635106
- Fraser C. I., Thiel M., Spencer H. G. & Waters J. M. 2010. -Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp. BMC Evolutionary Biology 10: 203. https://doi.org/10.1186/1471-2148-10-203
- Fraser C. I., NÎKULA R. & WATERS J. M. 2011. Oceanic rafting by a coastal community. Proceedings of the Royal Society of London Series B: Biological Sciences 278: 649-655.
- Fraser C. I., Zuccarello G. C., Spencer H. G., Salvatore L. C., GARCIA G. R. & WATERS J. M. 2013. — Genetic affinities between trans-oceanic populations of non-buoyant macroalgae in the high latitudes of the Southern Hemisphere. *PloS ONE* 8 (7): e69138.
- Fraser C. I., Velásquez M., Nelson W., Macaya E. & Cam-ERON H. H. 2019. — The biogeographic importance of buoyancy in macroalgae: A case study of the southern bull kelp genus Durvillaea (Phaeophyceae), including descriptions of two new species. Journal of Phycology 56: 23-36. https://doi.org/10.1111/ jpy.12939
- Fu Y.-X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915-925.
- FUJISAWA T. & BARRACLOUGH T. G. 2013. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent (GMYC) approach: A revised method and evaluation on simulated datasets. Systematic Biology 62: 707-724. https://doi. org/10.1093/sysbio/syt033
- GABRIELSON P. W. & SCAGEL R. F. 1989. The marine algae of British Columbia, northern Washington and Southeast Alaska: division Rhodophyta (red algae), class Rhodophyceae, order Gigartinales, families Caulacanthaceae and Plocamiaceae. Canadian Journal of Botany 67: 1221-1234. https://doi.org/10.1139/b89-160
- GRAVILETS S., LI H. & VOSE M. D. 2000. Patterns of parapatric speciation. Evolution 54: 1126-1134. https://doi. org/10.1111/j.0014-3820.2000.tb00548.x
- GRESSLER V., FUJII M. T., MARTINS A. P., COLEPICOLO P., MANCINI-FILHO J. & PINTO E. 2011. — Biochemical composition of two red seaweed species grown on the Brazilian coast. Journal of the Science of Food and Agriculture 91 (9): 1687-1692. https://doi. org/10.1002/jsfa.4370
- GUILLEMIN M.-L., VALERO M., FAUGERON S., NELSON W. & DESTOMBE C. 2014. — Tracing the trans-pacific evolutionary history of a domesticated seaweed (Gracilaria chilensis) with archaeological and genetic data. PLoS ONE 9 (12): e114039.
- GUILLEMIN M.-L., VALERO M., TELLIER F., MACAYA E. C., DES-TOMBE C. & FAUGERON S. 2016. — Phylogeography of seaweeds in the South East Pacific: Complex evolutionary processes along

- a latitudinal gradient, in Hu Z.-M. & FRASER C. I (eds), Seaweed Phylogeography. Springer, Dordrecht: 251-278.
- GUIRY M. D. & GUIRY G. M. 2020. AlgaeBase, Worldwide electronic publication, National University of Ireland, Galway. Available at http://www.algaebase.org.
- HARPER J. T. & SAUNDERS G. W. 2001. The application of sequences of the ribosomal cistron to the systematics and classification of the florideophyte red algae (Florideophyceae Rhodophyta). Cahiers de Biologie Marine 42: 25-38.
- HAYE P. A., SEGOVIA N. I., MUNOZ-HERRERA N. C., GÁLVEZ F. E., MARTÍNEZ A., MEYNARD A., PARDO-GANDARILLAS M. C., POU-LIN E. & FAUGERON S. 2014. — Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. *PLoS ONE* 9 (2): e88613.
- HEWITT G. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London B: Biological Sciences 359: 183-195. https://doi. org/10.1098/rstb.2003.1388
- HOMMERSAND M. H., Frederico S. & Freshwater D. W. 1994. — Phylogenetic systematics and biogeography of the Gigartinaceae (Gigartinales Rhodophyta) based on sequenceanalysis of rbcL. Botanica Marina 37: 193-203. https://doi. org/10.1515/botm.1994.37.3.193
- HOMMERSAND M. H. & FREDERICQ S. 2003. Biogeography of the marine red algae of the South African West Coast: a molecular approach. Proceedings of the International Seaweed Symposium 17: 325-336.
- Hulton N. R. J., Purves R. S., Mcculloch R. D., Sugden D. E. &BENTLEY M. J. 2002. — The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews 21: 233-241. https://doi.org/10.1016/S0277-3791(01)00103-2
- HURT C., ANKER A. & KNOWLTON N. 2009. A multilocus test of simultaneous divergence across the Isthmus of Panama using snapping shrimp in the genus Alpheus. Evolution 63: 514-530. https://doi.org/10.1111/j.1558-5646.2008.00566.x
- Kalyaanamoorthy S., Minh B. Q., Wong T. K. F., Von Haese-LER A. & JERMIIN L. S. 2017. — ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587. https://doi.org/10.1038/nmeth.4285
- KELLY R. P. & PALUMBI S. R. 2010. Genetic structure among 50 species of the Northeastern Pacific rocky intertidal community. PLoS ONE 5: e8594.
- KUMAR S., STECHER G., LI M., KNYAZ C. & TAMURA K. 2018. -MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35 (6): 1547-1549. https://doi.org/10.1093/molbev/msy096
- KUO C. H. & AVISE J. C. 2005. Phylogeographic breaks in low-dispersal species: the emergence of concordance among gene trees. Genetica 124: 179-186. https://doi.org/10.1007/ s10709-005-2095-y
- MCCULLOCH R. D., BENTLEY M. J., PURVES R. S., HULTON N. R. J., SUGDEN D. E. & CLAPPERTON C. M. 2000. — Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 15: 409-417. https://doi.org/10.1002/1099-1417(200005)15:4<409::AID-JQS539>3.0.CO;2-#
- Mercer J. 1976. Glacial history of Southernmost South America. Quaternary Research 6 (2): 125-166. https://doi.org/10.1016/0033-5894(76)90047-8
- Modica M. V., Puillandre N., Castelin M., Zhang Y. & HOLFORD M. 2014. — A good compromise: Rapid and robust species proxies for inventorying biodiversity hotspots using the Terebridae (Gastropoda: Conoidea). PLoS ONE 9: e102160.
- Monaghan M. T., Wild R., Elliot M., Fujisawa T., Balke M., INWARD D. J. G., LEES D. C., RANAIVOSOLO R., EGGLETON P., BARRACLOUGH T. G. & VOGLER A. P. 2009. — Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58: 298-311. https://

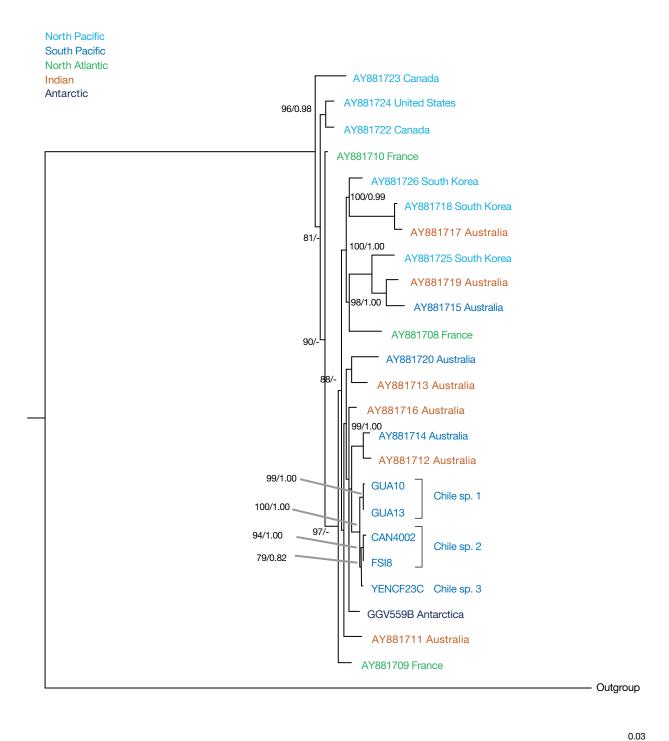
- doi.org/10.1093/sysbio/syp027
- MONTECINOS A., BROITMAN B. R., FAUGERON S., HAYE P., TEL-LIER F. & GUILLEMIN M.-L. 2012. — Species replacement along a linear coastal habitat: phylogeography and speciation in the red alga Mazzaella laminarioides along the south east pacific. BMC Evolutionary Biology 12: 97. https://doi.org/10.1186/1471-2148-12-97
- Mosblech N. A., Bush M. B. & Van Woesik R. 2011. On metapopulations and microrefugia: paleoecological insights. Journal of Biogeography 38: 419-429. https://doi.org/10.1111/j.1365-2699.2010.02436.x
- NEI M. & LI W. H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the USA 76: 5260-5273. https://doi.org/10.1073/pnas.76.10.5269
- NEI M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, 512p.
- Ocaranza-Barrera P., Gonzalez-Wevar C. A., Guillemin M.-L., ROSENFELD S. & MANSILLA A. 2019. — Molecular divergence between Iridaea cordata (Turner) Bory de Saint-Vincent from Antarctic Peninsula and the Magellan Region. Journal of Applied Phycology 31: 939-949. https://doi.org/10.1007/s10811-018-1656-2
- PAGE T. J., BAKER A. M., COOK B. D. & HUGHES J. M. 2005. -Historical transoceanic dispersal of a freshwater shrimp: the colonisation of the South Pacific by the genus Paratya (Atyidae). Journal of Biogeography 32: 581-593. https://doi.org/10.1111/ j.1365-2699.2004.01226.x
- PEREIRA R. C. & COSTA-LOTUFO L. V. 2012. Bioprospecting for bioactives from seaweeds: potential, obstacles and alternatives. Revista Brasileira de Farmacognosia 22 (4): 894-905. https://doi. org/10.1590/S0102-695X2012005000077
- Pereira R. C. & Vasconcelos M. A. 2014. Chemical defense in the red seaweed *Plocamium brasiliense*: spatial variability and differential action on herbivores. Brazilian Journal of Biology 74 (3): 545-552. https://doi.org/10.1590/bjb.2014.0080
- Pons J., Barraclough T. G., Gomez-Zurita J., Cardoso A., Duran D. P., Hazell S., Kamoun S., Sumlin W. D. & VOGLER A. P. 2006. — Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595-609. https://doi.org/10.1080/10635150600852011
- Puillandre N., Lambert A., Brouillet S. & Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. *Molecular Ecology* 21: 1864-1877. https://doi. org/10.1111/j.1365-294X.2011.05239.x
- RAMBAUT A. & DRUMMOND A. J. 2018. TreeAnnotator version 1.10.4: MCMC Output analysis. Available at: https://beast.com-
- RAMBAUT A., DRUMMOND A. J., XIE D., BAELE G. & SUCHARD M. A. 2018. — Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology syy032.
- RAMÍREZ M. E. & SANTELICES B. 1991. Catálogo de algas marinas bentónicas de la costa templada del Pacífico de Sudamérica. Pontificia Universidad Católica de Chile. Santiago, 430p.
- RAMÍREZ M. E. 2010. Flora marina bentónica de la región austral de Sudamérica y la Antártica. Anales Instituto Patagonia 38
- ROGER A. R. & HARPENDING H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552-569.
- RONQUIST F., TESLENKO M., VAN DER MARK P., AYRES D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A. & HUELSENBECK J. P. 2012. — MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology 61: 539-542. https://doi.org/10.1093/
- Rozas J., Ferrer-Mata A., Sánchez-Delbarrio J. C., Guirao-RICO S., LIBRADO P., RAMOS-ONSINS S. E. & SÁNCHEZ-GRACIA A.

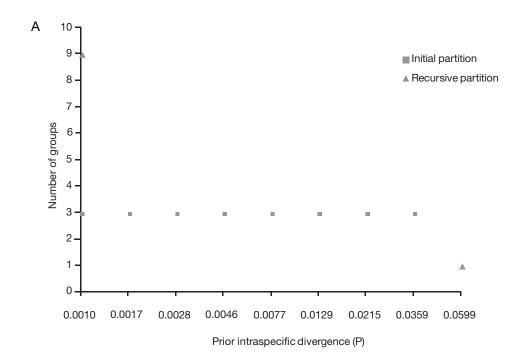

- 2017. DnaSP v6: DNA Sequence Polymorphism Analysis of Large Datasets. Molecular Biology and Evolution 34: 3299-3302. https://doi.org/10.1093/molbev/msx248
- RULL V. 2009. Microrefugia. *Journal of Biogeography* 36: 481-484. https://doi.org/10.1111/j.1365-2699.2008.02023.x
- SAILLARD M., HALL S. R., AUDIN L., FARBER D. S., HÉRAL G., MAR-TINOD J., REGARD V., FINKEL R. C. & BONDOUX F. 2009. Non-steady long-term uplift rates and Pleistocene marine terrace development along the Andean margin of Chile (31°S) inferred from 10Be dating. Earth and Planetary Sciences Letters 277: 50-63. https://doi.org/10.1016/j.epsl.2008.09.039
- SÁNCHEZ R., SEPÚLVEDA R. D., BRANTE A. & CÁRDENAS L. 2011. Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Marine Ecology Progress Series 434: 121-131. https://doi.org/10.3354/ meps09184
- SAN-MARTIN A., NEGRETE R. & ROVIROSA J. 1991. Insecticide and acaricide activities of polyhalogenated monoterpenes from Chilean *Plocamium cartilagineum*. *Phytochemistry* 30: 2165-2169. https://doi.org/10.1016/0031-9422(91)83607-M
- SAUNDERS G. W. 2005. Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philosophical Transactions of the Royal Society of London B: Biological Sciences 360: 1879-1888. https://doi.org/10.1098/ rstb.2005.1719
- SAUNDERS G. W. & LEHMKUHL K. V. 2005. Molecular divergence and morphological diversity among four cryptic species of *Plocamium* (Plocamiales, Florideophyceae) in northern Europe. European Journal of Phycology 40: 293-312. https://doi. org/10.1080/09670260500192935
- SÉRSIC A. N., COSACOV A., COCUCCI A. A., JOHNSON L. A., Pozner R., Avila L. J., Sites J. W. Jr & Morando M. 2011. -Emerging phylogeographic patterns of plants and terrestrial vertebrates from Patagonia. Biological Journal of the Linnean Society 103: 475-494. https://doi.org/10.1111/j.1095-8312.2011.01656.x
- SIMONS R. H. 1964. Species of *Plocamium* on the South African Coast. Bothalia 8: 183-193. https://doi.org/10.4102/abc.v8i2.1630
- SOUTH G. R. & ADAMS N. M. 1979. A revision of the genus Plocamium Lamouroux (Rhodophyta, Gigartinales) in New Zealand. Phycologia 18: 120-132. https://doi.org/10.2216/ i0031-8884-18-2-120.1
- Suchard M. A., Lemey P., Baele G., Ayres D. L., Drum-MOND A. J. & RAMBAUT A. 2018. — Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution 4 (1): vey016. https://doi.org/10.1093/ve/vey016
- TAJIMA F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585-595. https://doi.org/10.1093/genetics/123.3.585
- Tala F., Lopez B. A., Velásquez M., Jeldres R., Macaya E. C., MANSILLA A., OJEDA J. & THIEL M. 2019. — Long-term persistence of the floating bull kelp Durvillaea antarctica from the South-East Pacific: Potential contribution to local and transoceanic connectivity. Marine Environmental Research 149: 67-79. https://doi.org/10.1016/j.marenvres.2019.05.013
- Tellier F., Meynard A. P., Correa J. A., Faugeron S. & Valero M. 2009. — Phylogeographic analyses of the 30°S south-east Pacific biogeographic transition zone establish the occurrence of a sharp genetic discontinuity in the kelp Lessonia nigrescens: Vicariance or parapatry? *Molecular Phylogenetics and Evolution* 53: 679-693. https://doi.org/10.1016/j.ympev.2009.07.030
- THIEL M. & GUTOW L. 2005a. The ecology of rafting in the marine environment I. The floating substrata. Oceanography Marine Biology Annual Reviews 42: 181-263.
- THIEL M. & GUTOW L. 2005b. The ecology of rafting in the marine environment II. The rafting organisms and community. Oceanography Marine Biology Annual Reviews 43: 279-418. Trifinopoulos J., Nguyen L.-T., Von Haeseler A. & Minh B. Q.
- 2016. W-IQ-TREE: a fast online phylogenetic tool for maxi-

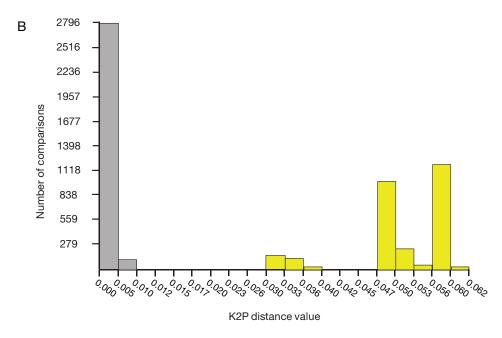
- mum likelihood analysis. Nucleic Acids Research 44: W232-W235. VIANNA J. A., MEDINA-VOGEL G., CHEHÉBAR C., SIELFELD W., OLAVARRIA C. & FAUGERON S. 2011. — Phylogeography of the Patagonian otter Lontra provocax: adaptive divergence to marine habitat or signature of southern glacial refugia? BMC Evolutionary Biology 11:53. https://doi.org/10.1186/1471-2148-11-53
- WATERS J. M. 2008. Driven by the West Wind Drift? A synthesis of southern temperate marine biogeography, with new directions for dispersalism. Journal of Biogeography 35 (3): 417-427. https:// doi.org/10.1111/j.1365-2699.2007.01724.x
- WATERS J. M., FRASER C. I. & HEWITT G. M. 2013. Founder takes all: density-dependent processes structure biodiversity. Trends in Ecology & Evolution 28: 78-85.
- WOMERSLEY H. B. S. 1971. The genus *Plocamium* (Rhodophyta) in southern Australia. Transactions of The Royal Society of South Australia 95: 9-27.
- WYNNE M. J. 2002. A description of *Plocamium fimbriatum* sp. nov. (Plocamiales, Rhodophyta) from the Sultanate of Oman, with a census of currently recognized species in the genus. Nova Hedwigia 75: 333-356. https://doi.org/10.1127/0029-5035/2002/0075-0333

- YANO T., KAMIYA M., ARAI S. & KAWAI H. 2004. Morphological homoplasy in Japanese Plocamium species (Plocamiales, Rhodophyta) inferred from the Rubisco spacer sequence and intracel-Îular acidity. Phycologia 43: 383-393. https://doi.org/10.2216/ i0031-8884-43-4-383.1
- ZEMLAK T. S., HABIT E. M., WALDE S. J., BATTINI M. A., ADAMS E. D. & RUZZANTE D. E. 2008. — Across the southern Andes on fin: glacial refugia, drainage reversals and a secondary contact zone revealed by the phylogeographical signal of Galaxias platei in Patagonia. Molecular Ecology 17: 5049-5061. https://doi.org/10.1111/j.1365-294X.2008.03987.x
- ZEMLAK T. S., HABIT E. M., WALDE S. J., CARREA C. & RUZ-ZANTE D. E. 2010. — Surviving historical Patagonian landscapes and climate: molecular insights from Galaxias maculatus. BMC Evolutionary Biology 10: 67. https://doi.org/10.1186/1471-2148-10-67
- ZHANG H., YAN J., ZHANG G. Q. & ZHOU K. Y. 2008. Phylogeography and Demographic History of Chinese Black-Spotted Frog Populations (Pelophylax nigromaculata): Evidence for Independent Refugia Expansion and Secondary Contact. BMC Evolutionary Biology 8: 21.

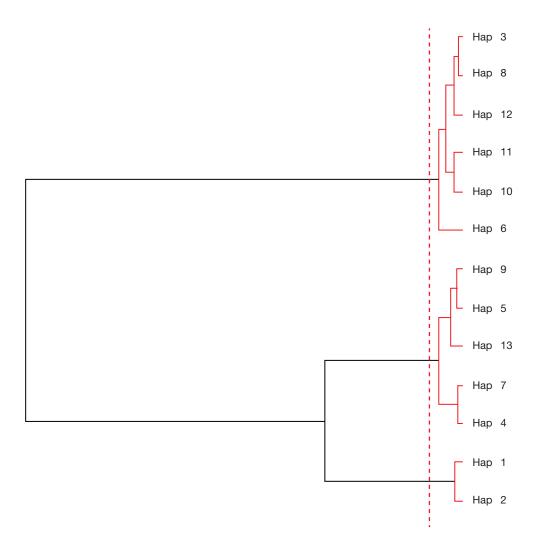
Submitted on 16 May 2020; accepted on 3 December 2020; published on 25 January 2021.


APPENDICES


APPENDIX 1. — Maximum likelihood (ML) phylogram of the genus *Plocamium* Lamouroux based on rbcL sequences. ML bootstrap (BS)/Bayesian posterior probability (PP) values are shown above or close to each branch and only values superior to 75 and 0.75, respectively, are given. Colors correspond to oceans where individuals sequenced where sampled. Outgroup corresponds to *Sarcodia ciliata* Zanardini (GenBank accession: KM360040).


14

0.03



APPENDIX 2. — Maximum likelihood (ML) phylogram of the genus Plocamium Lamouroux based on LSU sequences. ML bootstrap (BS)/Bayesian posterior probability (PP) values are shown above or close to each branch and only values superior to 75 and 0.75, respectively, are given. Colors correspond to oceans where individuals sequenced where sampled. Outgroup corresponds to Sarcodia ciliata Zanardini (GenBank accession: DQ343708).

APPENDIX 3. — Automatic Barcode Gap Discovery (ABGD) results and distribution of pairwise distances for the marker 5P-COI. **A**, ABGD results showing the number of groups (primary partitions) obtained for a range of prior maximum divergence of intraspecific diversity; **B**, bar chart showing the proportion of pairwise comparisons of 5P-COI gene at each range of sequence divergence (K2P distance). Intraspecific divergences are represented in grey bars and divergences belonging to different species are represented in yellow bars.

APPENDIX 4. — Ultrametric Bayesian tree reconstructed with the 5P-COI marker. The dotted vertical red line indicates the maximum likelihood transition point of the switch in branching rates, as estimated by a General Mixed Yule-Coalescent (GMYC) model. The GMYC analysis was performed using a single threshold. Haplotype code as in Appendix 5.

APPENDIX 5. – GenBank accession numbers of 5P-COI, rbcL and LSU sequences obtained for Chilean *Plocamium* Lamouroux spp. Haplotype code for COI-5P, as in Figure 2 and 3, is given for each individual. The voucher code and phase or sex observed for deposited individuals is indicated.

				GenBank accession	Haplotyp code	e GenBank accession	GenBank accession	
N°	Sample Code	Locality	Coordinates	COI	COI-5P	rbcL	LSU	Voucher code (phase/sex
1	GUA_1	Punta Guabún	41°38'S/74°02'W	MN967353	Нар1			SGO170286 (tetrasporophyte)
2	GUA_2	Punta Guabún	41°38'S/74°02'W	MN967354	Hap2			(
3	GUA_3	Punta Guabún	41°38'S/74°02'W	MN967355	Hap2	MT151849		
4	GUA_4	Punta Guabún	41°38'S/74°02'W	MN967356	Hap2			
5	GUA_6	Punta Guabún	41°38'S/74°02'W	MN967357	Hap2			
6	GUA_7	Punta Guabún	41°38'S/74°02'W	MN967358	Hap2			
7	GUA_9	Punta Guabún	41°38'S/74°02'W	MN967359	Hap2	MT151850		
8	GUA_10	Punta Guabún	41°38'S/74°02'W	MN967360	Hap2	MT151851	MT151869	
9	GUA_11	Punta Guabún	41°38'S/74°02'W	MN967361	Hap2			
10	GUA_13	Punta Guabún	41°38'S/74°02'W		Hap2	MT151852	MT151870	
11	GUA_14	Punta Guabún	41°38'S/74°02'W		Hap2			
12	GUA_15	Punta Guabún	41°38'S/74°02'W		Hap2			
13	GUA_16	Punta Guabún	41°38'S/74°02'W		Hap2	MT151853		
14	GUA_17	Punta Guabún	41°38'S/74°02'W		Hap2	MT151854		
15	GUA_19	Punta Guabún	41°38'S/74°02'W		Hap2			
16	GUA_22	Punta Guabún	41°38'S/74°02'W	MN967368	Hap2			
17	GUA_23	Punta Guabún	41°38'S/74°02'W	MN967369	Hap2			000170001
18	GRE4001A	San Gregorio	52°33'S/70°02'W	MN967421	Hap5			SGO170291 (tetrasporophyte)
19	GRE4002B	San Gregorio	52°33'S/70°02'W	MN967422	Нар3			SGO170292 (tetrasporophyte)
20	PCH_4008B	Parque Chabunco	52°59'S/70°48'W	MN967423	Hap3			SGO170290 (female)
21	PCH_4008C	Parque Chabunco	52°59'S/70°48'W	MN967424	Hap3			
22	PCH_4009A	Parque Chabunco	52°59'S/70°48'W	MN967425	Hap10			SGO170293 (female)
23	PCH_4009B	Parque Chabunco	52°59'S/70°48'W	MN967426	Нар3			SGO170294 (tetrasporophyte)
24	PCH_4009C	Parque Chabunco	52°59'S/70°48'W	MN967427	Нар3			(tetrasporophyte)
25	PCH_4010	Parque Chabunco	52°59'S/70°48'W		Hap3			
26	PCH_4011	Parque Chabunco	52°59'S/70°48'W		Hap3			
27	PCH_4012	Parque Chabunco	52°59'S/70°48'W		Hap3			
28	PCH_4013	Parque Chabunco	52°59'S/70°48'W	MN967431	Hap3			
29	PCH_4014	Parque Chabunco	52°59'S/70°48'W		Hap3			
30	PCH_4015	Parque Chabunco	52°59'S/70°48'W		Hap3			
31	PCH_4016	Parque Chabunco	52°59'S/70°48'W		Hap3			
32 33	PCH_4018	Parque Chabunco	52°59'S/70°48'W	MN967435	Hap3			
34	PCH_4019	Parque Chabunco Parque Chabunco	52°59'S/70°48'W		Hap3			
35	PCH_4020 PCH_4022	Parque Chabunco	52°59'S/70°48'W 52°59'S/70°48'W		Hap3			
36	PCH 4023	Parque Chabunco	52°59'S/70°48'W		Hap3 Hap3			
37	PCH_4024	Parque Chabunco	52°59'S/70°48'W		Нар3			
38	PCH 4025	Parque Chabunco	52°59'S/70°48'W		Нар3			
39	POR_1	Faro Porvenir	53°18'S/70°27'W		Нар3			
40	POR_2	Faro Porvenir	53°18'S/70°27'W		Нар3			
41	POR_3	Faro Porvenir	53°18'S/70°27'W		Hap3			
42	POR_4	Faro Porvenir	53°18'S/70°27'W	MN967445	Нар3			
43	POR_5	Faro Porvenir	53°18'S/70°27'W	MN967446	Нар3			
44	POR_6	Faro Porvenir	53°18'S/70°27'W	MN967447	Hap5			
45	POR_7	Faro Porvenir	53°18'S/70°27'W		Hap11			
46	POR_8	Faro Porvenir	53°18'S/70°27'W	MN967449	Hap4			
47	POR_9	Faro Porvenir	53°18'S/70°27'W		Hap5			
48	POR_10	Faro Porvenir	53°18'S/70°27'W	MN967451	Нар3			
49	POR_12	Faro Porvenir	53°18'S/70°27'W		Hap3			
50	POR_13	Faro Porvenir	53°18'S/70°27'W	MN967453	Hap3			
51	POR_14	Faro Porvenir	53°18'S/70°27'W	MN967454	Hap12			
52	POR_16	Faro Porvenir	53°18'S/70°27'W	MN967455	Hap3			
53	POR_17	Faro Porvenir	53°18'S/70°27'W	MN967456	Hap3			
54	POR_18	Faro Porvenir	53°18'S/70°27'W	MN967457	Hap4			
55 56	POR_4016A POR_4016B	Faro Porvenir Faro Porvenir	53°18'S/70°27'W 53°18'S/70°27'W	MN967458 MN967459	Hap5 Hap13			SGO170287 (not mature) SGO170288
57	CAN_1	Los Canelos	53°28'S/70°11'W	MN967388	Нар3			(tetrasporophyte)
58	CAN_2	Los Canelos	53°28'S/70°11'W	MN967389	Нар3			
59	CAN_3	Los Canelos	53°28'S/70°11'W	MN967390	Нар5			
60	CAN_4	Los Canelos	53°28'S/70°11'W	MN967391	Hap3			
61	CAN_5	Los Canelos	53°28'S/70°11'W	MN967392	Hap3			
62	CAN_6	Los Canelos	53°28'S/70°11'W	MN967393	Hap3			

APPENDIX 5. — Continuation

•••				GenBank accession	Haplotype GenBank code accession		GenBank accession	
N°	Sample Code		Coordinates	COI	COI-5P	rbcL	LSU	Voucher code (phase/sex)
63	CAN_7	Los Canelos	53°28'S/70°11'W	MN967394	Нар3			
64	CAN_8	Los Canelos	53°28'S/70°11'W	MN967395	Нар3			
65	CAN_4002	Los Canelos	53°28'S/70°11'W	MN967396	Hap5	MT151864	MT151867	
66	FSI_1	Faro San Isidro	53°46'S/70°58'W	MN967397	Hap3			
67	FSI_3	Faro San Isidro	53°46'S/70°58'W	MN967398	Hap3			
68	FSI_4	Faro San Isidro	53°46'S/70°58'W	MN967399	Hap6			
69	FSI_5	Faro San Isidro	53°46'S/70°58'W	MN967400	Нар3			
70	FSI_6	Faro San Isidro	53°46'S/70°58'W	MN967401	Нар3			
71	FSI_7	Faro San Isidro	53°46'S/70°58'W	MN967402	Нар3			
72	FSI_8	Faro San Isidro	53°46'S/70°58'W	MN967403	Hap4	MT151865	MT151868	
73	FSI_9	Faro San Isidro	53°46'S/70°58'W	MN967404	Hap3			
74	FSI_10	Faro San Isidro	53°46'S/70°58'W	MN967405	Hap7	MT151866		
75	FSI_11	Faro San Isidro	53°46'S/70°58'W	MN967406	Hap3			
76	FSI_12	Faro San Isidro	53°46'S/70°58'W	MN967407	Hap3			
77	FSI_13	Faro San Isidro	53°46'S/70°58'W	MN967408	Hap3			
78	FSI_14	Faro San Isidro	53°46'S/70°58'W	MN967409	Нар3			
79	FSI_15	Faro San Isidro	53°46'S/70°58'W	MN967410	Нар5			
80	FSI_16	Faro San Isidro	53°46'S/70°58'W	MN967411	Нар5			
81	FSI 17	Faro San Isidro	53°46'S/70°58'W	MN967412	Нар3			
82	FSI_18	Faro San Isidro	53°46'S/70°58'W	MN967413	Нар3			
83	FSI_20	Faro San Isidro	53°46'S/70°58'W	MN967414	Нар3			
84	FSI_21	Faro San Isidro	53°46'S/70°58'W	MN967415	Нар3			
85	FSI_22	Faro San Isidro	53°46'S/70°58'W	MN967416	Нар8			
86	FSI 23	Faro San Isidro	53°46'S/70°58'W	MN967417	Нар3			
87	FSI_24	Faro San Isidro	53°46'S/70°58'W	MN967418	Нар9			
88	FSI_26	Faro San Isidro	53°46'S/70°58'W	MN967419	Нар5			
89	FSI 27	Faro San Isidro	53°46'S/70°58'W	MN967420	Нар9			
90	YEN_CF22C	Fiordo Yendegaia	54°54'S/68°42'W	MN967370	Нарз	MT151855		
91	YEN_CF23C	Fiordo Yendegaia	54°54'S/68°42'W	MN967371	Нар3	MT151856	MT151871	
92	YEN_CF25C	Fiordo Yendegaia	54°54'S/68°42'W	MN967371	Нар4	MT151863	1011131071	
93	YEN_CF26C	Fiordo Yendegaia	54°54'S/68°42'W	MN967372	Нар3	MT151857		
	YEN_CF27C	Fiordo Yendegaia						
94 95	YEN_CF28C	Fiordo Yendegaia	54°54'S/68°42'W 54°54'S/68°42'W	MN967374 MN967375	Hap3	MT151858		SGO170296
95	TEN_CF26C	riordo feridegaia	34 34 3/00 42 W	10110907373	Hap3	MT151859		
00	VEN OFOCO	Etambe Wassels and	E 40E 410 /000 40114/	NAN1007070	110	NAT4 54 000		(tetrasporophyte)
96	YEN_CF29C	Fiordo Yendegaia	54°54'S/68°42'W	MN967376	Hap3	MT151860		SGO170297
07	VENI CESSS	Figure V	E 40E 410 (200 40"""	NANIOCZCZ-	11	NATA E 4 CC :		(tetrasporophyte)
97	YEN_CF30C	Fiordo Yendegaia	54°54'S/68°42'W	MN967377	Hap3	MT151861		
98	YEN_CF31C	Fiordo Yendegaia	54°54'S/68°42'W	MN967378	Hap3			
99	YEN_CF32C	Fiordo Yendegaia	54°54'S/68°42'W	MN967379	Hap3			
100	YEN_CF33C	Fiordo Yendegaia	54°54'S/68°42'W	MN967380	Hap3			
101	YEN_CF34C	Fiordo Yendegaia	54°54'S/68°42'W	MN967381	Hap3			
102	YEN_CF35C	Fiordo Yendegaia	54°54'S/68°42'W	MN967382	Hap3			
103	YEN_CF36C	Fiordo Yendegaia	54°54'S/68°42'W	MN967383	Hap3	MT151862		SGO170298
								(tetrasporophyte)
104	YEN_CF38C	Fiordo Yendegaia	54°54'S/68°42'W	MN967384	Hap3			
105	YEN_CF39C	Fiordo Yendegaia	54°54'S/68°42'W	MN967385	Нар3			
106	YEN_CF40C	Fiordo Yendegaia	54°54'S/68°42'W	MN967386	Нар3			
107	YEN CF42BC	Fiordo Yendegaia	54°54'S/68°42'W	MN967387	Нар3			